Pressure–volume–temperature (PVT) equation-of-state (EOS) information for polymers and polymeric composites is valuable for predicting their response to extreme conditions. An obstacle in determining equations of state for polymeric materials is the lack of a simple, static experimental method for acquiring PVT data for solid networks and liquids at pressures greater than several kilobars. Here, we report a novel approach in determining static EOS for polymers using high-pressure diamond-anvil cells coupled with optical microscopy and image analysis. Results are presented for a cross-linked poly(dimethylsiloxane) polymer, SylgardR 184. Static isothermal results were fitted to empirical and semiempirical equations of state, including the Tait, Birch–Murnaghan, and Vinet forms. Static PV data were also converted to pseudoshock velocity–pseudoparticle velocity (Usup) for comparison to dynamic Hugoniot data. A linear Rankine–Hugoniot fit Us=sTup+cT gives cT=1.572kms and sT=1.703. sT is related to the pressure derivative of the bulk modulus B0 by sT=(B0+1)4 and B0=5.8. A comparison of the static and shock data is given, along with an estimate of the Grüneisen parameter, and a discussion of the free volume content in the polymer network, and limitations of this novel method.

1.
P.
Zoller
,
J. Polym. Sci., Polym. Phys. Ed.
20
,
1453
(
1982
).
2.
P. A.
Rodgers
,
J. Appl. Polym. Sci.
48
,
1061
(
1993
).
3.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
, Berkeley,
1980
).
4.
J.
Fritz
,
Los Alamos National Laboratory
(unpublished results).
5.
W. J.
Carter
and
S. P.
Marsh
,
Los Alamos National Laboratory Report
No. LA-13006-MS,
1995
(unpublished).
6.
N. K.
Bourne
,
G. T.
Gray
, and
J. C. F.
Millet
,
Journal de Physique IV
110
,
815
(
2003
);
E. J.
Harris
,
P.
Taylor
, and
R. E.
Winter
,
Proceedings of the APS, 2003
(unpublished);
N. K.
Bourne
and
G. T.
Gray
,
J. Appl. Phys.
93
,
8966
(
2003
).
7.
W. J.
Carter
and
C. L.
Mader
,
Los Alamos National Laboratory Report
No. LA-4059,
1969
(unpublished).
8.
C. E.
Weir
,
J. Res. Natl. Bur. Stand.
46
,
207
(
1951
);
C. E.
Weir
,
J. Res. Natl. Bur. Stand.
53
,
245
(
1954
);
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
76
,
71
(
1948
).
9.
I. C.
Sanchez
and
J.
Cho
,
Polymer
36
(
15
),
2929
(
1995
);
Z.-T.
Yan
,
Commun. Theor. Phys.
17
,
389
(
1992
);
P.
Zoller
, in
The Polymer Handbook
, edited by
J.
Brandrup
and
E. H.
Immergut
(
Wiley
, New York,
1989
), p.
475
.
10.
P. G.
Tait
,
Phys. Chem.
2
,
1
(
1888
);
V. K.
Sachdev
,
U.
Yahsi
, and
R. K.
Jain
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
841
(
1998
).
11.
Z.
Sun
,
M.
Song
, and
Z.
Yan
,
Polymer
33
,
328
(
1992
).
12.
P.
Zoller
and
Y. A.
Fakhreddine
,
Thermochim. Acta
238
,
397
(
1994
);
C. S.
Patrickios
and
L.
Lue
,
J. Chem. Phys.
113
,
5485
(
2000
);
G. M.
Kontogeorgis
,
V. I.
Harismiadis
,
A.
Fredenslund
, and
D. P.
Tassios
,
Fluid Phase Equilib.
96
,
65
(
1994
);
K.
Tochigi
,
S.
Kurita
, and
T.
Matsumoto
,
Fluid Phase Equilib.
160
,
313
(
1999
);
W.
Brostow
,
J. V.
Duffy
,
G. F.
Lee
, and
K.
Madejczyk
,
Macromolecules
24
,
479
(
1991
);
A. J.
Barrett
and
C.
Domb
,
J. Stat. Phys.
77
,
491
(
1994
);
J. W.
Kang
,
J. H.
Lee
,
K. P.
Yoo
, and
C. S.
Lee
,
Fluid Phase Equilib.
194
,
77
(
2002
);
Z. H.
Sun
and
M.
Song
,
Acta Chimica Sinica
50
,
729
(
1992
);
R. N.
Lichtenthaler
,
D. D.
Liu
, and
J. M.
Prausnitz
,
Macromolecules
11
,
192
(
1978
);
V. K.
Sachdev
,
P. C.
Jain
, and
V. S.
Nanda
,
Mater. Res. Soc. Symp. Proc.
22
,
243
(
1984
).
13.
M.
Schmidt
and
F. H. J.
Maurer
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
1061
(
1998
).
14.
V. S.
Nanda
and
R.
Simha
,
J. Chem. Phys.
21
,
1884
(
1964
).
15.
R. K.
Jain
and
R.
Simha
,
Macromolecules
21
,
464
(
1989
).
16.
R.
Simha
and
A. J.
Havlik
,
J. Am. Chem. Soc.
86
,
197
(
1964
);
V. S.
Nanda
and
R.
Simha
,
J. Chem. Phys.
68
,
3158
(
1964
);
R.
Simha
and
T.
Somcynsky
,
Macromolecules
2
,
342
(
1969
).
17.
R.
Simha
,
Macromolecules
10
,
1025
(
1977
).
18.
R.
Simha
and
G.
Carri
,
J. Polym. Sci., Part B: Polym. Phys.
32
,
2645
(
1994
).
19.
Y.
Kobayashi
,
J. Chem. Soc., Faraday Trans.
87
,
3641
(
1991
);
Y.
Kobayashi
,
K.
Haraya
,
Y.
Kamiya
, and
S.
Hattori
,
Bull. Chem. Soc. Jpn.
65
,
160
(
1992
).
20.
G. T.
Dee
and
D. J.
Walsh
,
Polymer
33
,
16
(
1992
).
21.
P. J.
Flory
,
J. Am. Chem. Soc.
87
,
1833
(
1965
).
22.
T. G.
Fox
and
P. J.
Flory
,
J. Appl. Phys.
21
,
581
(
1950
);
T. G.
Fox
and
P. J.
Flory
,
J. Phys. Chem.
70
,
2384
(
1948
);
T. G.
Fox
and
P. J.
Flory
,
J. Phys. C
55
,
221
(
1951
);
T. G.
Fox
and
P. J.
Flory
,
J. Polym. Sci.
14
,
315
(
1954
).
23.
P. J.
Flory
,
R. A.
Orwoll
, and
A.
Vrij
,
J. Am. Chem. Soc.
86
,
3507
(
1964
).
24.
I. C.
Sanchez
and
R. H.
Lacombe
,
Macromolecules
11
,
1145
(
1978
);
I. C.
Sanchez
and
R. H.
Lacombe
,
J. Polym. Sci., Polym. Lett. Ed.
15
,
71
(
1977
);
I. C.
Sanchez
and
R. H.
Lacombe
,
J. Phys. Chem.
80
,
2352
(
1976
);
I. C.
Sanchez
and
R. H.
Lacombe
,
J. Phys. C
80
,
2568
(
1976
).
25.
F. D.
Murnaghan
,
Am. J. Math.
59
,
235
(
1937
);
R. E.
Cohen
,
O.
Gulseren
, and
R. J.
Hemley
,
Am. Mineral.
85
,
338
(
2000
);
W. G.
Cutler
,
R. H.
McMickle
,
W.
Webb
, and
R. W.
Schiessler
,
J. Chem. Phys.
29
,
727
(
1958
).
26.
F.
Birch
,
J. Appl. Phys.
9
,
279
(
1938
).
27.
K.
Kubota
and
K.
Ogino
,
Macromolecules
11
,
514
(
1978
);
G. A.
Neece
and
D. R.
Squire
,
J. Phys. Chem.
72
,
128
(
1968
).
28.
T. S.
Duffy
and
Y.
Wang
, in
Ultrahigh-pressure Mineralogy
, edited by
R. J.
Hemley
(
Mineralogical Society of America
, Washington, DC,
1998
), Vol.
37
, p.
425
.
30.
P.
Vinet
and et al.,
J. Phys. C
19
,
L467
(
1986
);
P.
Vinet
 et al.,
J. Phys.: Condens. Matter
1
,
1941
(
1989
).
31.
32.
L.
Merrill
and
W. A.
Bassett
,
Rev. Sci. Instrum.
45
,
290
(
1974
).
33.
D.
Schiferl
,
M.
Nicol
,
J. M.
Zaug
,
S. K.
Sharma
,
T. F.
Cooney
,
S. Y.
Wang
,
T. R.
Anthony
, and
J. F.
Fleischer
,
J. Appl. Phys.
82
,
3256
(
1997
).
34.
A.
Jarayman
,
Rev. Mod. Phys.
55
,
65
(
1983
).
35.
R.
LeSar
 et al.,
Solid State Commun.
32
,
131
(
1979
).
36.
J. C.
Miller
and
J. N.
Miller
,
Statistics for Analytical Chemistry
, 3rd ed. (
Ellis Horwood
, New York,
1993
).
37.
R. A.
Middaugh
and
C. A.
Goudey
,
Engineering in Harmony with the Ocean, Oceans 93 Proceedings, Victoria, BC, Canada, 18–21 October 1993
(unpublished), Vol.
1–3
.
38.
D. M.
Dattelbaum
,
Los Alamos National Laboratory
(unpublished).
39.
See EPAPS Document No. E-JCPSA6-122-505516 for supplementary information. Two supplementary figures and a supplementary table are available. Figure S1 shows plots of static PV data obtained by converting cross-sectional area to volume using V1V0=(A1l1A0l0) and an alternative method, V1V0=(A1A1A0A0) (as suggested by a reviewer of this manuscript). Figure S2 is a Us,up plot of Hugoniot loci by Fritz and Marsh (Refs. 3,5) and data from all of the static isothermal experiments described in this report. However, the data in this figure are the same as in Figure S1 using V1V0=(A1A1A0A0) converted to pseudovelocities. Table S1 is a listing of all of the static pressure–volume data from separate diamond cell experiments on Sylgard 184 and calculated using Eqs. (5)–(9). A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
40.
R.
Menikoff
,
T. D.
Sewell
,
High Press. Res.
21
,
121
(
2001
);
W.
Fickett
and
W. C.
Davis
,
Detonation
(
University of California
, Berkeley, CA,
1979
).
41.
D. M.
Dattelbaum
,
R. K.
Sander
,
M.
Whitehead
, and
G.
Quigley
,
Los Alamos National Laboratory
(unpublished).
42.
F.
Dowell
, Report No. LA-10164-MS,
1984
(unpublished).
43.
H.
Higuchi
,
A. M.
Jamieson
, and
R.
Simha
,
J. Polym. Sci., Part B: Polym. Phys.
34
,
1423
(
1996
).
44.
R.
Menikoff
and
T. D.
Sewell
,
High Press. Res.
21
,
121
(
2001
).
45.
E. M.
Kober
and
R.
Menikoff
, presented at the
Shock Compression of Condensed Matter - 1999, Conference of the American Physical Society Topical Group
, Snowbird, UT, USA, 1999 (unpublished).
46.
M. L.
Williams
,
R. F.
Landel
, and
J. D.
Ferry
,
J. Am. Chem. Soc.
77
,
3701
(
1955
).
47.
A. K.
Doolittle
,
J. Appl. Phys.
22
,
1471
(
1951
).
48.
T. G.
Fox
and
P. J.
Flory
,
J. Appl. Phys.
21
,
5
(
1950
);
R.
Simha
and
R.
F. Boyer
,
J. Chem. Phys.
37
,
1003
(
1962
).
49.
E. B.
Orler
(private communication).
50.
M.
Soutzidou
,
A.
Panas
, and
K.
Viras
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
2805
(
1998
).
51.
K.
Hagiwara
,
T.
Ougizawa
,
T.
Inoue
,
K.
Hirata
, and
Y.
Kobayashi
,
Radiat. Phys. Chem.
58
,
525
(
2000
).
52.
Dow Corning, “SYLGARD 184” Product Data Sheet
.
53.
G. T.
Dee
and
D. J.
Walsh
,
Macromolecules
21
,
815
(
1988
).
54.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
55.
R.
Simha
and
G.
Carri
,
J. Polym. Sci., Part B: Polym. Phys.
32
,
2645
(
1994
)
56.
P. M.
Bell
and
H. K.
Mao
(
Carnegie Institute of Washington Yearbook
,
1975
), Vol.
74
, pp.
399
;
J. H.
Burnett
,
H. M.
Cheong
, and
W.
Paul
,
Rev. Sci. Instrum.
61
,
3904
(
1990
).
57.
W. L.
Vos
and
J. A.
Schouten
,
J. Chem. Phys.
91
,
6302
(
1989
);
F.
Birch
and
E. C.
Robertson
, Report No. NR-32400,
1957
.
58.
D. W.
Krevelen
,
Properties of Polymers
(
Elsevier Science
, New York,
1997
).
59.
T. C.
Merkel
,
V. I.
Bondar
,
K.
Nagai
,
B. D.
Freeman
, and
I.
Pinnau
,
J. Polym. Sci., Part B: Polym. Phys.
38
,
415
(
2000
).
60.
M.
Leeman
,
G.
Eigenberger
, and
H.
Strathmann
,
J. Membr. Sci.
113
,
313
(
1996
);
R. W.
Baker
,
N.
Yoshioka
,
J. M.
Mohr
, and
A. J.
Kahn
,
J. Membr. Sci.
31
,
259
(
1987
);
A.
Singh
,
B. D.
Freeman
, and
I.
Pinnau
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
289
(
1998
).
61.
S. A.
Stern
,
V. M.
Shah
, and
B. J.
Hardy
,
J. Polym. Sci., Part B: Polym. Phys.
25
,
1263
(
1987
);
D. S.
Pope
,
I. C.
Sanchez
,
W. J.
Koros
, and
G. K.
Fleming
,
Macromolecules
24
,
1779
(
1991
);
C. K.
Yeom
,
S. H.
Lee
,
H. Y.
Song
, and
J. M.
Lee
,
J. Membr. Sci.
198
,
129
(
2002
).
62.
M. G.
De Angelis
 et al.,
J. Polym. Sci., Part B: Polym. Phys.
37
,
3011
(
1999
).
63.
S.
Pauly
, in
The Polymer Handbook
, 4th ed., edited by
J. I.
Brandrup
,
E. H.
Immergnt
,
E. A.
Grulke
(
Wiley
, New York,
1999
), p.
VI
.
64.
J. J.
Flores
and
E. L.
Chronister
,
J. Raman Spectrosc.
27
,
149
(
1996
).
65.
J. W.
Shaner
,
J. Chem. Phys.
89
,
1616
(
1988
).
66.

V0V at pressures corresponding to the Raman data were determined using a Tait equation of state in two pressure regimes. Below 20 kbar, the Tait parameters used to calculate V0V were C=0.0761 and B=0.703. Above 20 kbar, the Tait parameters were fixed at C=0.1415 and B=5.237. 20 kbar was chosen as an approximate value for the end of the crush-up regime in which the free volume from interchain spacing and network structure, is squeezed out, and above which, the material behaves more like a molecular solid.

67.
A. L.
Smith
and
D. R.
Anderson
,
Appl. Spectrosc.
38
,
822
(
1984
).

Supplementary Material

You do not currently have access to this content.