Correlations between adhesion hysteresis and local friction are theoretically and experimentally investigated. The model is based on the classical theory of adhesional friction, contact mechanics, capillary hysteresis, and nanoscale roughness. Adhesion hysteresis was found to scale with friction through the scaling factor containing a varying ratio of adhesion energy over the reduced Young’s modulus. Capillary forces can offset the relationship between adhesion hysteresis and friction. Measurements on a wide range of engineering samples with varying adhesive and elastic properties confirm the model. Adhesion hysteresis is investigated under controlled, low humidity atmosphere via ultrasonic force microscopy. Friction is measured by the friction force microscopy.

1.
B.
Bhushan
,
Handbook of Micro/Nanotribology
, 2nd ed. (
CRC
, Boca Raton, FL,
1999
).
2.
M. K.
Chaundhury
and
G. M.
Whitesides
,
Science
256
,
1539
(
1992
).
3.
P. M.
Hoffmann
,
S.
Jeffery
,
J. B.
Pethica
,
H. O.
Ozer
, and
A.
Oral
,
Phys. Rev. Lett.
87
,
265502
(
2001
).
4.
O.
Kolosov
and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 2
32
,
L1095
(
1993
).
5.
R.
Szoszkiewicz
,
B.
Huey
,
O. V.
Kolosov
,
G. A. D.
Briggs
,
G.
Gremaud
, and
A.
Kulik
,
Appl. Surf. Sci.
210
,
54
(
2003
).
6.
B. J.
Briscoe
,
D. C. B.
Evans
, and
D.
Tabor
,
J. Colloid Interface Sci.
61
,
9
(
1977
).
7.
M.
Barquins
and
R.
Courtel
,
Wear
32
,
133
(
1975
);
K.
Kendall
,
Wear
33
,
351
(
1975
).
8.
R. G.
Horn
,
J. N.
Israelachvili
, and
F.
Pribac
,
J. Colloid Interface Sci.
115
,
480
(
1987
);
G.
Luengo
,
M.
Heuberger
, and
J. N.
Israelachvili
,
J. Phys. Chem. B
104
,
7944
(
2000
).
9.
R.
Szoszkiewicz
, Ph.D. thesis, FSB,
Ecole Polytechnique Fédérale de Lausanne
, Lausanne,
2003
.
10.
D.
Maugis
,
Contact, Adhesion and Rupture of Elastic Solids
(
Springer
, Berlin,
1999
).
11.
F. P.
Bowden
and
D.
Tabor
,
Friction and Lubrication of Solids
(
Methuen
, London,
1967
).
12.
A.
Cottrell
,
Introduction to the Modern Theory of Metals
(
Institute of Metals
, London,
1988
).
13.
L. D.
Landau
and
E. M.
Lifschitz
,
Theory of Elasticity
(
Akademie GmbH
, Berlin,
1987
).
14.
B. N. J.
Persson
,
Phys. Rev. Lett.
87
,
116101
(
2001
);
[PubMed]
15.

A self-affine fractal surface satisfies a transformation xζx and zzζH, where x is a 2D position vector in a surface plane and H=3D is a Hurst exponent and D is a fractal dimension.

16.

The critical shear stress τ depends on sample elasticity and does not change with roughness. The critical tip-sample separation distance δc (where the contact is ruptured) may alter, but then also an initial contact point shifts by the same amount so that both effects cancel out.

17.

The contact length λ between smooth surfaces within used here JKRS approximation is λ=(RY)(FSP+2Fadh+2FSPFadh+Fadh2)3 with R=100nm, FSP=20nN, and Fadh tip-sample adherence force from Fig. 4.

18.
Y. I.
Rabinovich
,
J. J.
Adler
,
A.
Ata
,
R. K.
Singh
, and
B. M.
Moudgil
,
J. Colloid Interface Sci.
232
,
10
(
2000
).
19.

The digital lateral AFM images resolution was about (3000nm)(256points)12nm. Our tip, however, has higher radii of curvature limiting our experimental resolution at higher values depending on the asperities heights. Thus, some bigger length of 600nm was arbitrarily chosen to count asperities and obtain their mean separation distance (see Fig. 5 for an AFM topography line cross section with asperities separations).

You do not currently have access to this content.