pH, with its well-known value of 7 at ambient condition, is a most basic property of water, with wide implications in chemistry and biology. The pH value is determined by the tendency of autoionization of water molecules into ion pairs, H+ and OH, and is expected to vary extensively with the water condition, which determines the stability of the ion pairs. When temperature rises from the normal to the supercritical region, the pH of water experimentally exhibits complex, nonmonotonic temperature dependence, that is, it first decreases from 7 and then increases rapidly. Accurate theoretical evaluation of pH and microscopic understanding of this anomalous behavior have proven to be a challenging task because the hydration of these ions, especially for OH, is very difficult to reproduce. In the present study a molecular simulation is performed to understand this peculiar temperature dependence. The imbalance between the ion-water and the water-water molecular interaction strengths and the concomitant water density enhancement in the hydration shell, observed in the supercritical liquids, serve to put a subtle balance to produce this temperature dependence of the pH value. It is found that the large charge transfers from H+ and OH to the surrounding water molecules take place. In these transfers, not only water molecules in the neighboring hydration shell but also those in the outer hydration shell play a significant role. The coordination number of water molecules around OH is found to be 4.5 at 300K, which decreases slowly with temperature, for example, 4 at 800K, in the present calculation.

1.
W.
Kauzmann
and
D.
Eisenberg
,
The Structures and Properties of Water
(
Oxford
, London,
1969
).
2.
Water, a Comprehensive Treatise
, edited by
F.
Franks
(
Plenum
, New York,
1972–1982
), Vol.
1–7
.
3.
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
417
,
925
(
2002
).
4.
D.
Asthagiri
,
L. R.
Pratt
, and
H. S.
Ashbaugh
,
J. Chem. Phys.
119
,
2702
(
2003
).
5.
H. M.
Lee
,
P.
Tarkeshwar
, and
K. S.
Kim
,
J. Chem. Phys.
121
,
4657
(
2004
).
6.
P. B.
Balbuena
,
K. P.
Johnston
, and
P. J.
Rossky
,
J. Phys. Chem.
100
,
2706
(
1996
).
7.
T.
Komatsuzaki
and
I.
Ohmine
,
Chem. Phys.
180
,
239
(
1994
).
8.
R. E.
Mesmer
,
W. L.
Marshall
,
D. A.
Palmer
,
J. M.
Simonson
, and
H. F.
Holmes
,
J. Solution Chem.
17
,
699
(
1988
).
9.
Aqueous Systems at Elevated Temperature and Pressures
edited by
A. D.
Palmer
,
R.
Fernandez-Prini
, and
A. H.
Harvey
(
Elsevier
, London,
2004
).
10.
N.
Akiya
and
P. E.
Savage
,
Chem. Rev. (Washington, D.C.)
102
,
2725
(
2002
).
11.
N.
Yoshii
and
S.
Okazaki
,
J. Chem. Phys.
107
,
2020
(
1997
).
12.
I. B.
Petsche
and
P. G.
Debenedetti
,
J. Chem. Phys.
91
,
7075
(
1989
).
13.
P. T.
Cummings
,
H. D.
Cochran
,
J. M.
Simonson
,
R. E.
Mesmer
, and
S.
Karaborni
,
J. Chem. Phys.
94
,
5606
(
1991
).
14.
B.
Guillot
and
Y.
Guissani
,
J. Chem. Phys.
99
,
8075
(
1993
).
15.
J.
Gao
,
J. Phys. Chem.
98
,
6049
(
1994
).
16.
L. W.
Flanagin
,
P. B.
Balbuena
,
K. P.
Johnston
, and
P. J.
Rossky
,
J. Phys. Chem.
99
,
5196
(
1995
).
17.
M.
Re
and
D.
Laria
,
J. Phys. Chem. B
101
,
10494
(
1997
).
18.
O.
Kajimoto
,
Chem. Rev. (Washington, D.C.)
99
,
355
(
1999
).
19.
J. P.
Noworyta
,
S.
Koneshan
, and
J. C.
Rasaiah
,
J. Am. Chem. Soc.
122
,
11194
(
2000
).
20.
B. L.
Trout
and
M.
Parrinello
,
J. Phys. Chem. B
103
,
7340
(
1999
).
22.
H.
Sato
and
F.
Hirata
,
J. Phys. Chem. A
102
,
2603
(
1998
).
23.
J.
Florian
and
A.
Warshel
,
J. Phys. Chem. B
101
,
5583
(
1997
).
24.
J. A.
Mejias
and
S.
Lago
,
J. Chem. Phys.
113
,
7306
(
2000
).
25.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
26.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
 et al,
J. Comput. Chem.
14
,
1347
(
1993
).
27.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
28.
Y.
Guissani
and
B.
Guillot
,
J. Chem. Phys.
98
,
8221
(
1993
).
29.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
102
,
7470
(
1998
).
30.
Y.
Tu
and
A.
Laaksonen
,
J. Chem. Phys.
113
,
11264
(
2000
).
31.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
).
32.
U. W.
Schmitt
and
G. A.
Voth
,
J. Chem. Phys.
111
,
9361
(
1999
).
33.
D.
Laria
,
J.
Marti
, and
E.
Guardia
,
J. Am. Chem. Soc.
126
,
2125
(
2004
).
34.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic
, San Diego,
1996
).
35.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
36.
M.
Saito
and
H.
Nakamura
,
J. Comput. Chem.
11
,
76
(
1990
).
37.
R. H.
Wood
,
W. C. F.
Muhlbauer
, and
P. T.
Thompson
,
J. Phys. Chem.
95
,
6670
(
1991
).
39.
K. S.
Pitzer
,
J. Phys. Chem.
86
,
4704
(
1982
).
40.
B.
Kirchner
,
J.
Stubbs
, and
D.
Marx
,
Phys. Rev. Lett.
89
,
215901
(
2002
).
41.
K.
Ando
and
J. T.
Hynes
,
J. Phys. Chem. B
101
,
10464
(
1997
).
42.
P. L.
Geissler
,
C.
Dellago
,
D.
Chandler
,
J.
Hutter
, and
M.
Parrinello
,
Science
291
,
2121
(
2001
).
43.
R. M.
Lynden-Bell
and
J. C.
Rasaiah
,
J. Chem. Phys.
107
,
1981
(
1997
).
44.
H.
Yu
and
M.
Karplus
,
J. Chem. Phys.
89
,
2366
(
1988
).
45.
R. E.
Westacott
,
K. P.
Johnston
, and
P. J.
Rossky
,
J. Phys. Chem. B
105
,
6611
(
2001
).
46.
N.
Akiya
and
P. E.
Savage
,
J. Phys. Chem. A
104
,
4433
(
2000
).
47.
Innovation in Supercritical Fluids, Science and Technology
, edited by
K. W.
Hutchenson
and
N. R.
Foster
(
ACS Symposium Series 608
,
American Chemical Society
, Washington, DC,
1995
).
You do not currently have access to this content.