A (quasirelativistic) two-component density functional theory (DFT) approach to the computation of parity-violating energy differences between enantiomers is presented which is based on the zeroth-order regular approximation (ZORA). This approach is employed herein to compute parity-violating energy differences between several P and M conformations of dihydrogen dichalcogenides (H2X2 with X=O, S, Se, Te, Po), of which some compounds have recently been suggested as potential molecular candidates for the first experimental measurement of parity-violating effects in chiral molecules. The DFT ZORA results obtained in this work with “pure” density functionals are anticipated to deviate by well less than 1% from data that would be computed within related (relativistic) four-component Dirac–Kohn–Sham–Coulomb schemes. In our implementation of the ZORA slightly larger relative deviations are expected for hybrid functionals, depending on the amount of “exact” exchange. For B3LYP (20% exact exchange) differences are estimated to amount to at most 3% in hydrogen peroxide, 2% in disulfane, and 1% or less for the heavier homologs. Thus, the present two-component approach is expected to perform excellently when compared to four-component density functional schemes while being at the same time computationally more efficient. The ZORA approach will therefore be of particular interest for the prediction of parity-violating vibrational frequency shifts, for instance, in isotopomers of H2Se2 and H2Te2.

1.
R.
Berger
, in
Relativistic Electronic Structure Theory, Part: 2, Applications
, edited by
P.
Schwerdtfeger
(
Elsevier
, Netherlands,
2004
), pp.
188
288
.
2.
M.
Quack
,
Angew. Chem., Int. Ed. Engl.
28
,
571
(
1989
).
3.
C.
Chardonnet
,
C.
Daussy
,
T.
Marrel
,
A.
Amy-Klein
,
C. T.
Nguyen
, and
C. J.
Bordé
, in
Parity Violation in Atoms and Polarized Electron Scattering
, edited by
B.
Frois
and
M. A.
Bouchiat
(
World Scientific
, Singapore,
1999
), pp.
325
355
.
4.
M.
Quack
,
Angew. Chem., Int. Ed.
41
,
4618
(
2002
).
5.
J.
Crassous
,
F.
Manier
,
J.-P.
Dutasta
,
M.
Ziskind
,
C.
Daussy
,
C.
Grain
, and
C.
Chardonnet
,
ChemPhysChem
4
,
541
(
2003
).
6.
I. B.
Khriplovich
,
Parity Nonconservation in Atomic Phenomena
(
Gordon and Breach Science
, Philadelphia,
1991
).
7.
T. D.
Lee
and
C. N.
Yang
,
Phys. Rev.
104
,
254
(
1956
).
8.
C. S.
Wu
,
E.
Ambler
,
R. W.
Hayward
,
D. D.
Hoppes
, and
R. P.
Hudson
,
Phys. Rev.
105
,
1413
(
1957
).
9.
R. L.
Garwin
,
L. M.
Lederman
, and
M.
Weinrich
,
Phys. Rev.
105
,
1415
(
1957
).
10.
J. I.
Friedman
and
V. L.
Telegdi
,
Phys. Rev.
105
,
1681
(
1957
).
11.
R.
Berger
and
M.
Quack
,
J. Chem. Phys.
112
,
3148
(
2000
).
12.
A. C.
Hennum
,
T.
Helgaker
, and
W.
Klopper
,
Chem. Phys. Lett.
354
,
274
(
2002
).
13.
G.
Laubender
and
R.
Berger
,
ChemPhysChem
4
,
395
(
2003
).
14.
J. K.
Laerdahl
and
P.
Schwerdtfeger
,
Phys. Rev. A
60
,
4439
(
1999
).
15.
J.
Thyssen
,
J. K.
Laerdahl
, and
P.
Schwerdtfeger
,
Phys. Rev. Lett.
85
,
3105
(
2000
).
16.
L. N.
Ivanov
and
V. S.
Letokhov
,
Phys. Dokl.
43
,
523
(
1998
).
17.
J. N. P.
van Stralen
,
L.
Visscher
,
C. V.
Larsen
, and
H. J.
Aa. Jensen
,
Chem. Phys.
311
,
81
(
2005
).
18.
R.
Berger
,
N.
Langermann
, and
C.
van Wüllen
,
Phys. Rev. A
(to be published).
19.
S. F.
Mason
and
G. E.
Tranter
,
Chem. Phys. Lett.
94
,
34
(
1983
).
20.
S. F.
Mason
and
G. E.
Tranter
,
Mol. Phys.
53
,
1091
(
1984
).
21.
A.
Bakasov
,
T.-K.
Ha
, and
M.
Quack
, in
Chemical Evolution: Physics of the Origin and Evolution of Life
, edited by
J.
Chela-Flores
and
F.
Raulin
(
Kluwer Academic
, Netherlands,
1996
), pp.
287
296
.
22.
P.
Lazzeretti
and
R.
Zanasi
,
Chem. Phys. Lett.
279
,
349
(
1997
).
23.
A.
Bakasov
,
T.-K.
Ha
, and
M.
Quack
,
J. Chem. Phys.
109
,
7263
(
1998
).
24.
A.
Bakasov
and
M.
Quack
,
Chem. Phys. Lett.
303
,
547
(
1999
).
25.
T.
Kitayama
,
H.
Kiyonaga
,
K.
Morihashi
,
O.
Takahashi
, and
O.
Kikuchi
,
J. Mol. Struct.
589
,
183
(
2002
).
26.
A.
Bakasov
,
R.
Berger
,
T.-K.
Ha
, and
M.
Quack
,
Int. J. Quantum Chem.
99
,
393
(
2004
).
27.
L.
Wiesenfeld
,
Mol. Phys.
64
,
739
(
1988
).
28.
M.
Gottselig
,
D.
Luckhaus
,
M.
Quack
,
J.
Stohner
, and
M.
Willeke
,
Helv. Chim. Acta
84
,
1846
(
2001
).
29.
M.
Gottselig
,
M.
Quack
, and
M.
Willeke
,
Isr. J. Chem.
43
,
353
(
2003
).
30.
M.
Gottselig
,
M.
Quack
,
J.
Stohner
, and
M.
Willeke
,
Int. J. Mass. Spectrom.
233
,
373
(
2004
).
31.
M.
Quack
and
J.
Stohner
,
J. Chem. Phys.
119
,
11228
(
2003
).
32.
M.
Quack
and
J.
Stohner
,
Phys. Rev. Lett.
84
,
3807
(
2000
).
33.
M.
Quack
and
J.
Stohner
,
Z. Phys. Chem. (Oldenbourgh)
214
,
675
(
2000
).
34.
J. K.
Laerdahl
,
P.
Schwerdtfeger
, and
H. M.
Quiney
,
Phys. Rev. Lett.
84
,
3811
(
2000
).
35.
R.
Berger
,
M.
Quack
, and
J.
Stohner
,
Angew. Chem., Int. Ed.
40
,
1667
(
2001
).
36.
M.
Quack
and
J.
Stohner
,
Chirality
13
,
745
(
2001
).
37.
P.
Schwerdtfeger
,
J. K.
Laerdahl
, and
C.
Chardonnet
,
Phys. Rev. A
65
,
042508
(
2002
).
38.
R. G.
Viglione
,
R.
Zanasi
,
P.
Lazzeretti
, and
A.
Ligabue
,
Phys. Rev. A
62
,
052516
(
2000
).
39.
R.
Bast
and
P.
Schwerdtfeger
,
Phys. Rev. Lett.
91
,
023001
(
2003
).
40.
F.
Faglioni
and
P.
Lazzeretti
,
Phys. Rev. A
67
,
032101
(
2003
).
41.
P.
Schwerdtfeger
,
A.
Kuhn
,
R.
Bast
,
J. K.
Laerdahl
,
F.
Faglioni
, and
P.
Lazzeretti
,
Chem. Phys. Lett.
383
,
496
(
2004
).
42.
P.
Schwerdtfeger
and
R.
Bast
,
J. Am. Chem. Soc.
126
,
1652
(
2004
).
43.
A.
Rosen
and
D. E.
Ellis
,
J. Chem. Phys.
62
,
3039
(
1975
).
44.
W.
Klopper
,
J. H.
van Lenthe
, and
A. C.
Hennum
,
J. Chem. Phys.
113
,
9957
(
2000
).
45.
E.
van Lenthe
,
E.-J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
101
,
9783
(
1994
).
46.
S.
Faas
,
J. G.
Snijders
,
J. H.
van Lenthe
, and
E.-J.
Baerends
,
Chem. Phys. Lett.
246
,
632
(
1995
).
47.
C.
van Wüllen
,
J. Chem. Phys.
109
,
392
(
1998
).
48.
B.
Swirles
,
Proc. R. Soc. London, Ser. A
152
,
625
(
1935
).
49.
M. A.
Bouchiat
and
C.
Bouchiat
,
J. Phys. (Paris)
35
,
899
(
1974
).
50.
S. A.
Blundell
,
J.
Sapirstein
, and
W. R.
Johnson
,
Phys. Rev. D
45
,
1602
(
1992
).
51.
J.
Sapirstein
, in
Relativistic Electronic Structure Theory, Part: 1, Fundamentals
, edited by
P.
Schwerdtfeger
(
Elsevier
, Netherlands,
2002
), pp.
471
525
.
52.
V. V.
Flambaum
and
I. B.
Khriplovich
,
Sov. Phys. JETP
52
,
835
(
1980
).
53.
I. B.
Zel’dovich
,
Sov. Phys. JETP
6
,
1184
(
1958
).
54.
I. B.
Khriplovich
,
Sov. Phys. JETP
52
,
177
(
1980
).
55.
V. G.
Gorshkov
,
M. G.
Kozlov
, and
L. N.
Labzowsky
,
Sov. Phys. JETP
55
,
1042
(
1982
).
56.
I. B.
Khriplovich
,
Z. Phys. A
322
,
507
(
1985
).
57.
A. L.
Barra
,
J. B.
Robert
, and
L.
Wiesenfeld
,
Phys. Lett. A
115
,
443
(
1986
).
58.
A. L.
Barra
,
J. B.
Robert
, and
L.
Wiesenfeld
,
Europhys. Lett.
5
,
217
(
1988
).
59.
A. L.
Barra
and
J. B.
Robert
,
Mol. Phys.
88
,
875
(
1996
).
60.
J. B.
Robert
and
A. L.
Barra
,
Chirality
13
,
699
(
2001
).
61.
A.
Soncini
,
F.
Faglioni
, and
P.
Lazzeretti
,
Phys. Rev. A
68
,
033402
(
2003
).
62.
W. R.
Johnson
and
G.
Soff
,
At. Data Nucl. Data Tables
33
,
405
(
1985
).
63.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
64.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
65.
M.
Häser
and
R.
Ahlrichs
,
J. Comput. Chem.
10
,
104
(
1989
).
66.
F.
Faglioni
and
P.
Lazzeretti
,
Phys. Rev. E
65
,
011904
(
2002
).
67.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
68.
69.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
70.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nuisar
,
Can. J. Phys.
58
,
1200
(
1980
).
71.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
72.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
73.
T.
Saue
(private communication).
74.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
75.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
76.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
77.
J.
Stohner
(private communication).
78.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
79.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
You do not currently have access to this content.