Using higher levels of wave-function-based electronic structure theory than previously applied, as well as density functional theory (B-LYP and B3-LYP functionals), all theoretical models conclude that three ONOOH conformers are stationary point minima, in disagreement with some of the previous studies that we survey. In order of increasing energy, these are the cis-cis, cis-perp, and trans-perp conformers. Basis sets including diffuse functions seem to be needed to obtain a qualitatively correct representation of the internal rotation potential energy surface at higher levels of theory. Internal rotation about the peroxide bond involving the cis-cis, cis-gauche transition structure (TS), cis-perp, and cis-trans TS conformers is studied in detail. To help ascertain the relative stability of the cis-perp conformer, multireference configuration interaction energy calculations are carried out, and rule of thumb estimates of multireference character in the ground-state wave functions of the ONOOH conformers are considered. CCSD(T)/aug-cc-pVTZ physical properties (geometries, rotational constants, electric dipole moments, harmonic vibrational frequencies, and infrared intensities) are compared with the analogous experimental data wherever possible, and also with density functional theory. Where such experimental data are nonexistent, the CCSD(T) and B3-LYP results are useful representations. For example, the electric dipole moment μe of the cis-cis conformer is predicted to be 0.97±0.03D. CCSD(T) energies, extrapolated to the aug-cc-pVNZ limit, are employed in isodesmic reaction schemes to derive zero Kelvin heats of formation and bond dissociation energies of the ONOOH stationary point minima. In agreement with recent gas-phase experiments, the peroxide bond dissociation energies of the cis-cis and trans-perp conformers are calculated as 19.3±0.4 and 16.0±0.4kcalmol, respectively. The lowest energy cis-cis conformer is less stable than nitric acid by 28.1±0.4kcalmol at 0 K.

1.
M. P.
McGrath
,
M. M.
Francl
,
F. S.
Rowland
, and
W. J.
Hehre
,
J. Phys. Chem.
92
,
5352
(
1988
).
2.
M. P.
McGrath
and
F. S.
Rowland
,
J. Phys. Chem.
98
,
1061
(
1994
).
3.
D. J.
Benton
and
P.
Moore
,
J. Chem. Soc. A
1970
,
3179
.
4.
K. N.
Mahoney
,
J. Am. Chem. Soc.
92
,
5262
(
1970
).
5.
B.-M.
Cheng
,
J.-W.
Lee
, and
Y.-P.
Lee
,
J. Phys. Chem.
95
,
2814
(
1991
).
6.
W.-J.
Chen
,
W.-J.
Lo
,
B.-M.
Cheng
, and
Y.-P.
Lee
,
J. Chem. Phys.
97
,
7167
(
1992
).
7.
W.-J.
Lo
and
Y.-P.
Lee
,
J. Chem. Phys.
101
,
5494
(
1994
).
8.
W.-J.
Lo
and
Y.-P.
Lee
,
Chem. Phys. Lett.
229
,
357
(
1994
).
9.
J. O.
Edwards
and
R. C.
Plumb
,
Prog. Inorg. Chem.
41
,
599
(
1994
).
10.
G.
Merenyi
,
J.
Lind
,
G.
Czapski
, and
S.
Goldstein
,
Inorg. Chem.
42
,
3796
(
2003
).
11.
P. J.
Coupe
and
D. L. H.
Williams
,
J. Chem. Soc., Perkin Trans. 2
2001
,
1595
.
12.
L. P.
Olson
,
M. D.
Bartberger
, and
K. N.
Houk
,
J. Am. Chem. Soc.
125
,
3999
(
2003
).
13.
Y. V.
Geletii
,
D. G.
Musaev
,
L.
Khavrutskii
, and
C. L.
Hill
,
J. Phys. Chem. A
108
,
289
(
2003
).
14.
J. S.
Beckman
,
T. W.
Beckman
,
J.
Chen
,
P. A.
Marshall
, and
B. A.
Freeman
,
Proc. Natl. Acad. Sci. U.S.A.
87
,
1620
(
1990
).
15.
C. E.
Richeson
,
P.
Mulder
,
V. W.
Bowry
, and
K. U.
Ingold
,
J. Am. Chem. Soc.
120
,
7211
(
1998
).
16.
J. K.
Hurst
and
S. V.
Lymar
,
Acc. Chem. Res.
32
,
520
(
1999
).
17.
S. P.
Sander
,
B. J.
Finlayson-Pitts
,
R. R.
Friedl
 et al, “
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies
,” Evaluation Number 14, NASA JPL Publication No. 0225 (
2002
).
18.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
 et al,
Atmos. Chem. Phys.
4
,
1461
(
2004
).
19.
M. A.
Grela
and
A. J.
Colussi
,
J. Phys. Chem.
100
,
10150
(
1996
).
20.
D. M.
Matheu
and
W. H.
Green
, Jr.
,
Int. J. Chem. Kinet.
32
,
245
(
2000
).
21.
D. M.
Golden
and
G. P.
Smith
,
J. Phys. Chem. A
104
,
3991
(
2000
).
22.
J.
Troe
,
Int. J. Chem. Kinet.
33
,
878
(
2001
).
23.
L. L.
Lohr
,
J. R.
Barker
, and
R. M.
Shroll
,
J. Phys. Chem. A
107
,
7429
(
2003
).
24.
P.
Maurer
,
C. F.
Thomas
,
R.
Kissner
,
H.
Ruegger
,
O.
Greter
,
U.
Rothlisberger
, and
W. H.
Koppenol
,
J. Phys. Chem. A
107
,
1763
(
2003
).
25.
S. A.
Nizkorodov
and
P. O.
Wennberg
,
J. Phys. Chem. A
106
,
855
(
2002
).
26.
H.
Hippler
,
S.
Nasterlack
, and
F.
Striebel
,
Phys. Chem. Chem. Phys.
4
,
2959
(
2002
).
27.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
28.
F.
Jensen
,
Introduction to Computational Chemistry
(
Wiley
, New York,
1999
).
29.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
, New York,
2000
).
30.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
.
96
,
6796
(
1992
).
31.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
32.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
);
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
33.
R. F.
Hout
, Jr.
,
B. A.
Levi
, and
W. J.
Hehre
,
J. Comput. Chem.
3
,
234
(
1982
).
34.
G.
Fogarasi
and
P.
Pulay
, in
Vibrational Spectra and Structure
, edited by
J. P.
Durig
(
Elsevier
, Amsterdam,
1985
), vol.
14
, p.
125
.
35.
J. A.
Pople
,
J. W.
McIver
, Jr.
, and
N. S.
Ostlund
,
J. Chem. Phys.
49
,
2960
(
1968
).
36.
W.
Klopper
,
K. L.
Bak
,
P.
Jorgensen
,
J.
Olsen
, and
T.
Helgaker
,
J. Phys. B
32
,
R103
(
1999
).
37.
A.
Halkier
,
T.
Helgaker
,
P.
Jorgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
);
D. G.
Truhlar
,
Chem. Phys. Lett.
294
,
45
(
1998
).
38.
A. J. C.
Varandas
,
J. Chem. Phys.
113
,
8880
(
2000
).
39.
J. M. L.
Martin
, in
Computational Thermochemistry
,
ACS Symposium Series
Vol.
677
, edited by
K. K.
Irikura
and
D. J.
Frurip
(
American Chemical Society
, Washington, D.C.,
1998
), p.
212
.
40.
M. P.
McGrath
and
F. S.
Rowland
,
J. Phys. Chem. A
106
,
8191
(
2002
). Note that Eq. (7) therein is misprinted.
41.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
110
,
8384
(
1999
).
42.
J. M. L.
Martin
and
P. R.
Taylor
,
J. Chem. Phys.
106
,
8620
(
1997
).
43.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
44.
M. P.
McGrath
and
F. S.
Rowland
(unpublished).
45.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 98, Gaussian, Inc., Pittsburgh,
2001
.
46.
H.-J.
Werner
and
P. J.
Knowles
, with contributions from
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
 et al, MOLPRO, version 2000.1.
47.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
);
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
48.
M.
Quack
,
Angew. Chem., Int. Ed.
41
,
4618
(
2002
).
49.
R. S.
Zhu
and
M. C.
Lin
,
J. Chem. Phys.
119
,
10667
(
2003
).
50.
D. M.
Golden
,
J. R.
Barker
, and
L. L.
Lohr
,
J. Phys. Chem. A
107
,
11057
(
2003
).
51.
B. D.
Bean
,
A. K.
Mollner
,
S. A.
Nizkorodov
,
G.
Nair
,
M.
Okumura
,
S. P.
Sander
,
K. A.
Peterson
, and
J. S.
Francisco
,
J. Phys. Chem. A
107
,
6974
(
2003
).
52.
H.-H.
Tsai
,
T. P.
Hamilton
,
J.-H.
Tsai
,
M.
van der Woerd
,
J. G.
Harrison
,
M. J.
Jablonsky
,
J. S.
Beckman
, and
W. H.
Koppenol
,
J. Phys. Chem.
100
,
15087
(
1996
).
53.
K. N.
Houk
,
K. R.
Condroski
, and
W. A.
Pryor
,
J. Am. Chem. Soc.
118
,
13002
(
1996
).
54.
R.
Sumathi
and
S. D.
Peyerimhoff
,
J. Chem. Phys.
107
,
1872
(
1997
).
55.
R. D.
Bach
,
M. N.
Glukhovtsev
, and
C.
Canepa
,
J. Am. Chem. Soc.
120
,
775
(
1998
).
56.
K.
Doclo
and
U.
Rothlisberger
,
Chem. Phys. Lett.
297
,
205
(
1998
);
J.
van de Vondele
and
U.
Rothlisberger
,
J. Chem. Phys.
113
,
4863
(
2000
).
57.
N. M.
Donahue
,
R.
Mohrschladt
,
T. J.
Dransfield
,
J. G.
Anderson
, and
M. K.
Dubey
,
J. Phys. Chem. A
105
,
1515
(
2001
).
58.
D. A.
Dixon
,
D.
Feller
,
C.-G.
Zhan
, and
J. S.
Francisco
,
J. Phys. Chem. A
106
,
3191
(
2002
).
59.
H. W.
Jin
,
Z. Z.
Wang
,
Q. S.
Li
, and
X. R.
Huang
,
J. Mol. Struct.
624
,
115
(
2003
).
60.
D. G.
Musaev
and
K.
Hirao
,
J. Phys. Chem. A
107
,
1563
(
2003
).
61.
R. D.
Bach
,
O.
Dmitrenko
, and
C. M.
Estevez
,
J. Am. Chem. Soc.
125
,
16204
(
2003
).
62.
Y.
Zhao
,
K. N.
Houk
, and
L. P.
Olson
,
J. Phys. Chem. A
108
,
5864
(
2004
).
63.
J. L.
Fry
,
S. A.
Nizkorodov
,
M.
Okumura
,
C. M.
Roehl
,
J. S.
Francisco
, and
P. O.
Wennberg
,
J. Chem. Phys.
121
,
1432
(
2004
).
64.
I. B.
Pollack
,
I. M.
Konen
,
E. X.
Li
, and
M. I.
Lester
,
J. Chem. Phys.
119
,
9981
(
2003
).
65.
B. J.
Drouin
,
J. L.
Fry
, and
C. E.
Miller
,
J. Chem. Phys.
120
,
5505
(
2004
).
66.
J.
Matthews
,
A.
Sinha
, and
J. S.
Francisco
,
J. Chem. Phys.
120
,
10543
(
2004
);
[PubMed]
J.
Matthews
,
R.
Sharma
, and
A.
Sinha
,
J. Phys. Chem. A
108
,
8134
(
2004
).
67.
I. M.
Konen
,
I. B.
Pollack
,
E. X.
Li
, and
M. I.
Lester
,
J. Chem. Phys.
(submitted).
68.
T. A.
Ruden
,
P. R.
Taylor
, and
T.
Helgaker
,
J. Chem. Phys.
119
,
1951
(
2003
);
K.
Yagi
,
K.
Hirao
,
T.
Taketsugu
,
M. W.
Schmidt
, and
M. S.
Gordon
,
J. Chem. Phys.
121
,
1383
(
2004
).
[PubMed]
69.
A. P.
Cox
and
J. M.
Riveros
,
J. Chem. Phys.
42
,
3106
(
1965
).
70.
D. J.
Millen
and
J. R.
Morton
,
J. Chem. Soc.
1960
,
1523
.
71.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
72.
G. A.
Petersson
,
T. G.
Tensfeldt
, and
J. A.
Montgomery
, Jr.
,
J. Chem. Phys.
94
,
6091
(
1991
).
73.
J. A.
Montgomery
, Jr.
,
J. W.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
101
,
5900
(
1994
).
74.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
);
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
75.
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
Chem. Phys. Lett.
172
,
346
(
1990
).
76.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem., Symp.
23
,
199
(
1989
).
77.
J. M. L.
Martin
and
S.
Parthiban
, in
Quantum-Mechanical Prediction of Thermochemical Data
,
Understanding Chemical Reactivity series
vol.
22
, edited by
J.
Cioslowski
(
Kluwer
, Dordrecht,
2001
), p.
31
.
78.
K.
Raghavachari
and
G. W.
Trucks
,
Chem. Phys. Lett.
162
,
511
(
1989
), and references therein.
79.
D.
Feller
and
D. A.
Dixon
,
J. Phys. Chem. A
107
,
9641
(
2003
), and references therein.
80.
R. H.
Jackson
,
J. Chem. Soc.
1962
,
4585
;
K. C.
Kim
and
G. M.
Campbell
,
J. Mol. Struct.
129
,
263
(
1985
).
81.
L. V.
Gurvich
,
I. V.
Veyts
, and
C. B.
Alcock
,
Thermodynamic Properties of Individual Substances
, 4th ed. (
Hemisphere
, New York,
1989
), Part 1, Vol.
1
.
82.
M. W.
Chase
, Jr.
,
J. Phys. Chem. Ref. Data Monogr.
9
,
1
(
1998
).
83.
O. V.
Dorofeeva
,
V. S.
Iorish
,
V. P.
Novikov
, and
D. B.
Neumann
,
J. Phys. Chem. Ref. Data
32
,
879
(
2003
).
84.
B.
Ruscic
,
A. F.
Wagner
,
L. B.
Harding
 et al,
J. Phys. Chem. A
106
,
2727
(
2002
).
85.
M.
Litorja
and
B.
Ruscic
,
J. Electron Spectrosc. Relat. Phenom.
97
,
131
(
1998
).
86.
K.
Doclo
and
U.
Rothlisberger
,
J. Phys. Chem. A
104
,
6464
(
2000
).
87.
See EPAPS Document No. E-JCPSA6-122-306513 for tables of electronic energies of ONOOH conformers (Table SI), H2O, HOOH, and trans ONOH (Table SII); and Fig. 2 without interpolation for the small geometry effect (Fig. S2). A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.

Supplementary Material

You do not currently have access to this content.