We report the first harmonic vibrational spectra for each of the lowest lying isomers within the four major families of minima of (H2O)20, namely, the dodecahedron, fused cubes, face-sharing pentagonal prisms, and edge-sharing pentagonal prisms. These were obtained at the second-order Møller–Plesset perturbation level of theory (MP2) with the augmented correlation consistent basis set of double zeta quality (aug-cc-pVDZ) at the corresponding minimum energy geometries. The computed infrared (IR) spectra are the first ones obtained from first principles for these clusters. They were found to contain spectral features, which can be directly mapped onto the distinctive spectroscopic signatures of their constituent tetramer, pentamer, and octamer fragments. The dodecahedron spectra show the richest structure in the OH stretching region and are associated with the most redshifted OH vibrations with respect to the monomer. The lowest lying edge-sharing pentagonal prism isomer displays intense IR active vibrations that are redshifted by 600cm1 with respect to the water monomer. Furthermore the most redshifted, IR-active OH stretching vibrations for all four networks correspond to hydrogen bonded OH groups, which exhibit the following two common characteristics: (i) they belong to fragments which have a “free” OH stretch and (ii) they act as donors to a neighboring water molecule along a “dimerlike” (strong) hydrogen bond. The zero-point energy corrected MP2/CBS (complete basis set) limit binding energies D0 for the four isomers are −163.1 kcal/mol (edge-sharing pentagonal prism), −160.1 kcal/mol (face-sharing pentagonal prism), −157.5 kcal/mol (fused cubes), and −148.1 kcal/mol (dodecahedron).

1.
R. N.
Pribble
and
T. S.
Zwier
,
Science
265
,
75
(
1994
).
2.
C. J.
Gruenloh
,
J. R.
Carney
,
C. A.
Arrington
,
T. S.
Zwier
,
S. Y.
Fredericks
, and
K. D.
Jordan
,
Science
276
,
1678
(
1997
);
S. Y.
Fredericks
,
J. M.
Pedulla
,
K. D.
Jordan
, and
T. S.
Zwier
,
Theor. Chem. Acc.
96
,
51
(
1997
);
C. J.
Gruenloh
,
J. R.
Carney
,
F. C.
Hagemeister
,
C. A.
Arrington
,
T. S.
Zwier
,
S. Y.
Fredericks
,
J. T.
Wood
III
, and
K. D.
Jordan
,
J. Chem. Phys.
109
,
6601
(
1998
);
C. J.
Gruenloh
,
J. R.
Carney
,
F. C.
Hagemeister
,
T. S.
Zwier
,
J. T.
wood
, and
K. D.
Jordan
,
J. Chem. Phys.
113
,
2290
(
2000
).
3.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
8774
(
1993
).
4.
C.
Jacoby
,
W.
Roth
,
M.
Schmitt
,
C.
Janzen
,
D.
Spangenberg
, and
K.
Kleinermanns
,
J. Phys. Chem. A
102
,
4471
(
1998
);
M.
Schmitt
,
C.
Jacoby
, and
K.
Kleinermanns
,
J. Chem. Phys.
108
,
4486
(
1998
);
W.
Roth
,
M.
Schmitt
,
C.
Jacoby
,
D.
Spangenberg
,
C.
Janzen
, and
K.
Kleinermanns
,
Chem. Phys.
239
,
1
(
1998
);
C.
Janzen
,
D.
Spangenberg
,
W.
Roth
, and
K.
Kleinermanns
,
J. Chem. Phys.
110
,
9898
(
1999
).
5.
F.
Huisken
,
M.
Kaloudis
, and
A.
Kulcke
,
J. Chem. Phys.
104
,
17
(
1996
).
6.
R.
Frochtenicht
,
M.
Kaloudis
,
M.
Koch
, and
F.
Huisken
,
J. Chem. Phys.
105
,
6128
(
1996
).
7.
U.
Buck
,
I.
Ettischer
,
M.
Melzer
,
V.
Buch
, and
J.
Sadlej
,
Phys. Rev. Lett.
80
,
2578
(
1998
);
J.
Brudermann
,
M.
Melzer
,
U.
Buck
,
J. K.
Kazimirski
,
J.
Sadlej
, and
V.
Buch
,
J. Chem. Phys.
110
,
10649
(
1999
);
J.
Sadlej
,
V.
Buch
,
J. K.
Kazimirski
, and
U.
Buck
,
J. Phys. Chem. A
103
,
4933
(
1999
).
8.
J.
Brudermann
,
P.
Lohbrandt
,
U.
Buck
, and
V.
Buch
,
Phys. Rev. Lett.
80
,
2821
(
1998
);
J.
Brudermann
,
P.
Lohbrandt
,
U.
Buck
, and
V.
Buch
,
J. Chem. Phys.
112
,
11038
(
2000
);
U.
Buck
and
F.
Huisken
,
Chem. Rev. (Washington, D.C.)
100
,
3863
(
2000
).
9.
P.
Andersson
,
C.
Steinbach
, and
U.
Buck
,
Eur. Phys. J. D
24
,
53
(
2003
).
10.
J. P.
Devlin
,
C.
Joyce
, and
V.
Buch
,
J. Phys. Chem. A
104
,
1974
(
2000
);
J. P.
Devlin
,
J.
Sadlej
, and
V.
Buch
,
J. Phys. Chem. A
105
,
974
(
2001
).
11.
M. W.
Severson
,
J. P.
Devlin
, and
V.
Buch
,
J. Chem. Phys.
119
,
4449
(
2003
);
J. P.
Devlin
,
J. Geophys. Res., [Planets]
106
,
33333
(
2001
);
V.
Buch
and
J. P.
Devlin
,
J. Chem. Phys.
110
,
3437
(
1999
), and references therein.
12.
K.
Nauta
and
R. E.
Miller
,
Science
287
,
293
(
2000
).
13.
M. E.
Fajardo
and
S.
Tam
,
J. Chem. Phys.
115
,
6807
(
2001
).
14.
C. J.
Burnham
,
S. S.
Xantheas
,
M. A.
Miller
,
B.
Applegate
, and
R. E.
Miller
,
J. Chem. Phys.
117
,
1109
(
2002
).
15.
(a)
S. S.
Xantheas
,
J. Chem. Phys.
102
,
4505
(
1995
);
(b)
S. S.
Xantheas
and
E.
Aprà
,
J. Chem. Phys.
120
,
823
(
2004
).
[PubMed]
16.
S. Y.
Fredericks
,
K. D.
Jordan
, and
T. S.
Zwier
,
J. Phys. Chem.
100
,
7810
(
1996
).
17.
S. S.
Xantheas
,
J. Phys. Chem.
100
,
9703
(
1996
);
O. M.
Cabarcos
,
C. J.
Weinheimer
,
J. M.
Lisy
, and
S. S.
Xantheas
,
J. Chem. Phys.
110
,
5
(
1999
);
H. E.
Dorsett
,
R. O.
Watts
, and
S. S.
Xantheas
,
J. Phys. Chem. A
103
,
3351
(
1999
);
P.
Ayotte
,
S. B.
Nielsen
,
G. H.
Weddle
,
M. A.
Johnson
, and
S. S.
Xantheas
,
J. Phys. Chem. A
103
,
10665
(
1999
).
18.
C.
Chaundari
,
Y. S.
Wang
,
J. C.
Jiang
,
Y. T.
Lee
, and
H. C.
Chang
,
Mol. Phys.
99
,
1161
(
2001
);
J. C.
Jiang
,
Y. S.
Wang
,
H. C.
Chang
,
S. H.
Lin
,
Y. T.
Lee
,
G.
Niedner-Schatteburg
, and
H. C.
Chang
,
J. Am. Chem. Soc.
122
,
1398
(
2000
).
19.
J. K.
Kazimirski
and
V.
Buch
,
J. Phys. Chem. A
107
,
9762
(
2003
).
20.
D. J.
Wales
and
M. P.
Hodges
,
Chem. Phys. Lett.
286
,
65
(
1998
), and references therein.
21.
J. L.
Kassner
,Jr.
and
D. E.
Hagen
,
J. Chem. Phys.
64
,
1860
(
1976
);
X.
Yang
and
A. W.
Castleman
,
J. Am. Chem. Soc.
111
,
6845
(
1989
);
S.
Wei
,
Z.
Shi
, and
A. W.
Castleman
, Jr.
,
J. Chem. Phys.
94
,
3268
(
1991
).
22.
E. D.
Sloan
, Jr.
,
Clathrate Hydrates of Natural Gases
, 2nd ed. (
Marcel Dekker
, New York,
1998
).
23.
G. S.
Fanourgakis
,
E.
Aprá
, and
S. S.
Xantheas
,
J. Chem. Phys.
121
,
2655
(
2004
).
24.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
25.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
26.
C. F.
Bunge
,
Theor. Chim. Acta
16
,
126
(
1970
);
V.
Termath
,
W.
Klopper
, and
W.
Kutzelnigg
,
J. Chem. Phys.
94
,
2002
(
1991
);
W.
Klopper
,
J. Chem. Phys.
102
,
6168
(
1995
);
S. S.
Xantheas
and
T. H.
Dunning
,Jr.
,
J. Phys. Chem.
97
,
18
(
1993
);
S. S.
Xantheas
,
J. Chem. Phys.
104
,
8821
(
1996
).
27.
C. J.
Burnham
and
S. S.
Xantheas
,
J. Chem. Phys.
116
,
5115
(
2002
);
C. J.
Burnham
and
S. S.
Xantheas
,
J. Chem. Phys.
116
,
1500
(
2002
);
C. J.
Burnham
,
J.
Li
,
S. S.
Xantheas
, and
M.
Leslie
,
J. Chem. Phys.
110
,
4566
(
1999
).
28.
B.
Hartke
,
Phys. Chem. Chem. Phys.
5
,
275
(
2003
).
29.
R. A.
Kendall
,
E.
Aprà
,
D. E.
Bernholdt
 et al,
Comput. Phys. Commun.
128
,
260
(
2000
);
High Performance Computational Chemistry Group, “NWCHEM A Computational Chemistry Package for Parallel Computers, Version 4.6” (Pacific Northwest National Laboratory, Richland, WA,
2003
).
31.
J. E.
Bertie
,
H. J.
Labbe
, and
E.
Whalley
,
J. Chem. Phys.
50
,
4501
(
1969
).
32.
J.-C.
Li
,
J. Chem. Phys.
105
,
6733
(
1996
).
33.
J. E.
Bertie
,
M. K.
Ahmed
, and
H. H.
Eysel
,
J. Phys. Chem.
93
,
2210
(
1989
).
34.
L. A.
Pugh
and
K. N.
Rao
, in
Molecular Spectroscopy; Modern Research
, edited by
K. N.
Rao
(
Academic
, New York,
1976
), Vol.
2
, Chap. 4.
35.
J. P.
Devlin
,
P. J.
Wooldridge
, and
G.
Ritzhaupt
,
J. Chem. Phys.
84
,
6095
(
1986
).
36.
J. P.
Devlin
,
J.
Sadlej
, and
V.
Buch
,
J. Phys. Chem.
105
,
974
(
2001
).
37.
I.
Morrison
,
J.-C.
Li
, and
S.
Jenkins
,
S. S.
Xantheas
, and
M. C.
Payne
,
J. Phys. Chem. B
101
,
6146
(
1997
).
38.
V.
Schlegel
,
Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur.
44
,
343
(
1883
).
39.
M. V.
Kirov
,
J. Struct. Chem.
44
,
420
(
2003
).
You do not currently have access to this content.