Molecules confined in nanopores show unusual behavior not seen in bulk systems. The present paper reports on molecular dynamics simulations of unusual freezing behavior in confined Ar. Similar to bulk Ar, liquid Ar confined in pores with a diameter D>15σ(5.1nm), where σ is the diameter of the Ar atom, crystallizes when the cooling rate is lower than a critical value (Qc). We also find that the spatial confinement does not have significant influence on Qc when D>15σ(5.1nm). In the pore of 10σ(3.4nm) in diameter, on the other hand, the behavior is dramatically changed. Crystalline Ar does not appear inside the pore even when the system is cooled at a rate lower than the Qc in the bulk system by over two orders of magnitude. Instead, amorphous Ar characterized by local icosahedral configurations is formed in the pore. We further find that, even when crystalline Ar is formed outside the pore, it does not grow deeply into the pore. This supports that the amorphous Ar is actually the most stable phase in the pore. It is well known that Ar is a poor glass former. Our finding that even such an amorphous Ar is the most stable in the pore suggests that, in any system, it is possible to prepare amorphous structure selectively by using nano-molds.

1.
H. K.
Christenson
,
J. Phys.: Condens. Matter
13
,
R95
(
2001
).
2.
L. D.
Gelb
,
K. E.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
,
Rep. Prog. Phys.
62
,
1573
(
1999
).
3.
A. S.
Coolidge
,
J. Am. Chem. Soc.
46
,
596
(
1924
).
4.
R. W.
Batchelor
and
A. G.
Foster
,
Trans. Faraday Soc.
40
,
300
(
1944
).
5.
J.
Warnock
,
D. D.
Awschalom
, and
M. W.
Shafer
,
Phys. Rev. Lett.
57
,
1753
(
1986
).
6.
E. B.
Molz
,
A. P. Y.
Wong
,
M. H. W.
Chan
, and
J. R.
Beamish
,
Phys. Rev. B
48
,
5741
(
1993
).
7.
B.
Schäfer
,
D.
Balszunat
,
W.
Langel
, and
B.
Asmussen
,
Mol. Phys.
89
,
1057
(
1996
).
8.
P.
Huber
and
K.
Knorr
,
Phys. Rev. B
60
,
12657
(
1999
).
9.
K.
Morishige
and
K.
Kawano
,
J. Phys. Chem. B
104
,
2894
(
2000
).
10.
K.
Morishige
,
K.
Kawano
, and
T.
Hayashigi
,
J. Phys. Chem. B
104
,
10298
(
2000
).
11.
D. W.
Brown
,
P. E.
Sokol
, and
S. N.
Ehrlich
,
Phys. Rev. Lett.
81
,
1019
(
1998
).
12.
D. E.
Silva
,
P. E.
Sokol
, and
S. N.
Ehrlich
,
Phys. Rev. Lett.
88
,
155701
(
2002
).
13.
M.
Miyahara
and
K. E.
Gubbins
,
J. Chem. Phys.
106
,
2865
(
1997
).
14.
M. W.
Maddox
and
K. E.
Gubbins
,
J. Chem. Phys.
107
,
9659
(
1997
).
15.
F. R.
Hung
,
G.
Dudziak
,
M.
Sliwinska-Bartkowiak
, and
K. E.
Gubbins
,
Mol. Phys.
102
,
223
(
2004
).
16.
H.
Kanda
,
M.
Miyahara
, and
K.
Higashitani
,
Langmuir
16
,
8529
(
2000
).
17.
H.
Kanda
,
M.
Miyahara
, and
K.
Higashitani
,
J. Chem. Phys.
120
,
6173
(
2004
).
18.
J.
Hoffmann
and
P.
Nielaba
,
Phys. Rev. E
67
,
036115
(
2003
).
19.
K.
Koga
,
G. T.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
,
Nature (London)
412
,
802
(
2001
).
20.
K.
Nishio
,
J.
Kōga
,
T.
Yamaguchi
, and
F.
Yonezawa
,
J. Phys. Soc. Jpn.
73
,
627
(
2004
).
21.
K.
Nishio
,
J.
Kōga
,
T.
Yamaguchi
, and
F.
Yonezawa
,
Phys. Rev. B
69
,
214201
(
2004
).
22.
K.
Nishio
,
J.
Kōga
,
T.
Yamaguchi
, and
F.
Yonezawa
,
J. Non-Cryst. Solids
345-346
,
223
(
2004
).
23.
F.
Yonezawa
,
Solid State Phys.
45
,
179
(
1991
).
24.
S.
Nose
and
F.
Yonezawa
,
J. Chem. Phys.
84
,
1803
(
1986
).
25.
F.
Yonezawa
,
S.
Nose
, and
S.
Sakamoto
,
J. Non-Cryst. Solids
95–96
,
83
(
1987
).
26.
J. M. D.
MacElroy
and
K.
Raghavan
,
J. Chem. Phys.
93
,
2068
(
1990
).
27.
L. D.
Gelb
and
K. E.
Gubbins
,
Langmuir
14
,
2097
(
1998
).
28.

Truncating the potential at some cutoff distance results in the overestimation of the internal energy. Therefore it is necessary for calculating quantitatively the internal energy to set the cutoff distance long enough or to apply long range corrections. On the other hand, it is considered that the truncation has less effect on the dynamics and the atomic structure. In the present paper, we study qualitatively the cooling rate dependence of the atomic structure of confined solid Ar. Therefore it is expected that our conclusions are not affected by truncating the Ar–Ar and Ar–O interactions at 3σ and 3σArO, respectively.

29.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
, Oxford,
1987
).
30.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
31.
P. R.
tenWolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
32.
A.
Kouchi
and
T.
Kuroda
,
Jpn. J. Appl. Phys., Part 2
29
,
L807
(
1990
).
You do not currently have access to this content.