We present an unusual temperature dependence of thermal strains in 4-(10-hydroxy)decyl benzoate (HDB) modified SWNT∕PS (SWNT—single wall carbon nanotube, PS—polystyrene) nanocomposites. The strain transfer from the matrix to nanotubes in these nanocomposites, inferred from the frequency change of the Raman active tangential modes of the nanotubes, is enhanced strongly below 300 K, whereas it is vanishingly small at higher temperatures. The increased strain transfer is suggestive of reinforcement of the HDB-SWNT∕PS nanocomposites at low temperatures. On the other hand, the pristine SWNTs couple weakly to the PS matrix over the entire temperature range of 4.5–410 K. We argue that the strain transfer in HDB-SWNT∕PS is determined by the thermomechanical properties of the interface region composed of polystyrene plasticized by the tethered alkanelike modifier.

1.
D. D. L.
Chung
,
Carbon Fiber Composites
(
Butterworth-Heinemann
, Newton,
1994
).
2.
J. L.
Bahr
and
J. M.
Tour
,
Mater. Chem.
12
,
1952
(
2002
).
3.
C. A.
Mitchell
,
J. L.
Bahr
,
S.
Arepalli
,
J. M.
Tour
, and
R.
Krishnamoorti
,
Macromolecules
35
,
8825
(
2002
).
4.
V. G.
Hadjiev
,
M. N.
Iliev
,
S.
Arepalli
,
P.
Nikolaev
, and
B. S.
Files
,
Appl. Phys. Lett.
78
,
3193
(
2001
).
5.
O.
Lourie
and
H. D.
Wagner
,
J. Mater. Res.
13
,
2418
(
1998
).
6.
O.
Dubay
,
G.
Kresse
, and
H.
Kuzmany
,
Phys. Rev. Lett.
88
,
235506
(
2002
).
7.
A.
Jorio
,
A. G.
Souza Filho
,
G.
Dresselhaus
 et al,
Phys. Rev. B
65
,
155412
(
2002
).
8.
A.
Jorio
,
M. A.
Pimenta
,
A. G.
Souza Filho
 et al,
Phys. Rev. Lett.
90
,
107403
(
2003
).
9.
S.
Reich
,
H.
Jantoljak
, and
C.
Thomsen
,
Phys. Rev. B
61
,
R13389
(
2000
).
10.

Raman spectra were recorded on a Jobin Yvon S3000 spectrometers equipped with a LN-cooled charged coupled device (CCD). A long-working distance microscope objective 50× of Olympus 45 microscope was used for both to focus the laser beam to a spot with diameter 2μm on the sample surface and to collect the scattered light. The laser power density was kept below 104Wcm2 to prevent a substantial overheating of the sample at the laser spot.

11.

Functionalized carbon nanotubes: Pristine SWNTs produced by HiPCO process (Ref. 14) were functionalized by reacting with organic diazonium compounds (Ref. 12).

12.
J. L.
Bahr
and
J. M.
Tour
,
Chem. Mater.
13
,
3823
(
2001
).
13.
C. A.
Dyke
and
J. M.
Tour
,
J. Am. Chem. Soc.
125
,
1156
(
2003
).
14.
P.
Nikolaev
,
M. J.
Bronikowski
,
R. K.
Bradley
,
F.
Rohmund
,
R. T.
Colbert
,
K. A.
Smith
, and
R. E.
Smalley
,
Chem. Phys. Lett.
91
,
313
(
1999
).
15.

Atactic polystyrene with weight-average molecular weight Mw=152000Da, polydispersity ratio MwMn<1.05 was used for preparation of the composites. Composites were prepared by solution mixing appropriate quantities of pristine or functionalized SWNTs and polystyrene in toluene at room temperature. The solutions were dried extensively at room temperature and subsequently annealed at 180 °C in a vacuum oven for 24 h.

16.
J. Q.
Pham
,
C. A.
Mitchell
,
J. L.
Bahr
,
J. M.
Tour
,
R.
Krishnamoorti
, and
P. F.
Green
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
3339
(
2003
).
17.
J.
Maultzsch
,
S.
Reich
, and
C.
Thomsen
,
Phys. Rev. B
64
,
121407
(
2001
).
18.
M. S.
Strano
,
S. K.
Doorn
,
E. H.
Haroz
,
C.
Kittrell
,
R. H.
Hauge
, and
R. E.
Smalley
,
Nano Lett.
3
,
1091
(
2003
).
19.

The RBM mode frequency in a SWNT is given by ωRBM(cm1)=241(cm1)dnt(nm). From this expression it directly follows that ΔωRBMωRBM=Δdntdnt=ϵci, where ϵci is the strain along the circumference. On the other hand, under the reasonable approximation given in Ref. 4: ΔωG+ωG+=γ(1νnt)ϵz, where γ=1.24 is the Grüneisen parameter and νnt=0.16 to the nanotubes Poisson’s ratio. Given ϵci=νntϵz we finally obtain ΔωRBMωRBM=νntΔωG+[γ(1νnt)ωG+].

20.

The axial stress on the nanotube due to the shrinkage of the matrix is σnt=ΔαΔTEntẼ(T), where Ẽ=1+(fntEnt)(fmEm), and fnt and fm are the volume fractions of the nanotubes and the matrix. The 1.5 wt % HDB-SWNT∕PS nanocomposite was loaded with 1.5 wt % HDB-SWNTs that corresponds to a volume fraction fnt=0.02 and fm=0.98. For the calculation of ϵzcal=ΔαΔTẼ(T) we used the following values of the parameters: linear CTE αm(<Tg)=70×106K1 (Ref. 26) and αnt=1.5×106 (Ref. 27) and the temperature dependence of Em taken from Ref. 28. Note that the volume CTE of PS is three times larger than the linear one (Ref. 26).

21.
K.
Liao
and
S.
Li
,
Appl. Phys. Lett.
79
,
4225
(
2001
).
22.
C.
Wei
,
D.
Srivastava
, and
K.
Cho
,
Nano Lett.
2
,
647
(
2002
).
23.
R. A.
Vaia
and
E. P.
Giannelis
,
Macromolecules
30
,
7990
(
1997
).
24.

The ratio of the number of circumferential SWNTs (Np) and the total number of nanotubes (N) in a bundle is given by NpN=12(Nd1)(3Nd2+1), provided the number Nd=D(nm)1.7(nm) of the nanotubes across the bundle diameter D is odd (Ref. 29). It is also reasonable to assume that only half of the surface of the nanotubes along the bundle circumference is exposed to the organic modifier. Given these premises it follows that bulk abundance of 1 functionalizing moiety to 66 carbon atom (166) translates to 2N66Np1037 surface coverage of a SWNT bundle, 60 nm thick. For Nd even, the above expressions have different form (Ref. 29). The estimates for Nd and Nd=Nd+1, however, give very close results.

25.
J. A.
Forrest
,
K. Dalnoki
Veress
, and
J. R.
Dutcher
,
Phys. Rev. E
56
,
5705
(
1997
).
26.
Polymer Data Handbook
, edited by
J. E.
Mark
(
Oxford University Press
, Oxford,
1999
), p.
834
.
27.
Y.
Maniwa
,
R.
Fujiwara
,
H.
Kira
 et al,
Phys. Rev. B
64
,
241402
(
2001
).
28.
I.
Perepechko
,
Low-temperature Properties of Polymers
(
Mir Publishers
, Moscow,
1980
).
29.
M. F.
Yu
,
B. S.
Files
,
S.
Arepalli
, and
R. S.
Ruoff
,
Phys. Rev. Lett.
84
,
5552
(
2000
).
You do not currently have access to this content.