Stochastic Schrödinger equations are used to describe the dynamics of a quantum open system in contact with a large environment, as an alternative to the commonly used master equations. We present a study of the two main types of non-Markovian stochastic Schrödinger equations, linear and nonlinear ones. We compare them both analytically and numerically, the latter for the case of a spin-boson model. We show in this paper that two linear stochastic Schrödinger equations, derived from different perspectives by Diósi, Gisin, and Strunz [Phys. Rev. A 58, 1699 (1998)], and Gaspard and Nagaoka [J. Chem. Phys. 13, 5676 (1999)], respectively, are equivalent in the relevant order of perturbation theory. Nonlinear stochastic Schrödinger equations are in principle more efficient than linear ones, as they determine solutions with a higher weight in the ensemble average which recovers the reduced density matrix of the quantum open system. However, it will be shown in this paper that for the case of a spin-boson system and weak coupling, this improvement does only occur in the case of a bath at high temperature. For low temperatures, the sampling of realizations of the nonlinear equation is practically equivalent to the sampling of the linear ones. We study further this result by analyzing, for both temperature regimes, the driving noise of the linear equations in comparison to that of the nonlinear equations.
Skip Nav Destination
Article navigation
22 March 2005
Research Article|
March 29 2005
Non-Markovian stochastic Schrödinger equations in different temperature regimes: A study of the spin-boson model
Inés de Vega;
Inés de Vega
Departamento de Física Fundamental II, Universidad de La Laguna
, La Laguna 38203, Tenerife, Spain
Search for other works by this author on:
Daniel Alonso;
Daniel Alonso
Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna
, La Laguna 38203, Tenerife, Spain
Search for other works by this author on:
Pierre Gaspard;
Pierre Gaspard
Center for nonlinear phenomena and complex systems, Université Libre de Bruxelles
, Bvd du Triomphe 1050-Bruxelles
Search for other works by this author on:
Walter T. Strunz
Walter T. Strunz
Physikalisches Institut, Universität Freiburg
, Hermann-Herder-Strasse 3, 79104-Freibũrg, Germany
Search for other works by this author on:
J. Chem. Phys. 122, 124106 (2005)
Article history
Received:
September 30 2004
Accepted:
January 13 2005
Citation
Inés de Vega, Daniel Alonso, Pierre Gaspard, Walter T. Strunz; Non-Markovian stochastic Schrödinger equations in different temperature regimes: A study of the spin-boson model. J. Chem. Phys. 22 March 2005; 122 (12): 124106. https://doi.org/10.1063/1.1867377
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00