Stochastic Schrödinger equations are used to describe the dynamics of a quantum open system in contact with a large environment, as an alternative to the commonly used master equations. We present a study of the two main types of non-Markovian stochastic Schrödinger equations, linear and nonlinear ones. We compare them both analytically and numerically, the latter for the case of a spin-boson model. We show in this paper that two linear stochastic Schrödinger equations, derived from different perspectives by Diósi, Gisin, and Strunz [Phys. Rev. A58, 1699 (1998)], and Gaspard and Nagaoka [J. Chem. Phys.13, 5676 (1999)], respectively, are equivalent in the relevant order of perturbation theory. Nonlinear stochastic Schrödinger equations are in principle more efficient than linear ones, as they determine solutions with a higher weight in the ensemble average which recovers the reduced density matrix of the quantum open system. However, it will be shown in this paper that for the case of a spin-boson system and weak coupling, this improvement does only occur in the case of a bath at high temperature. For low temperatures, the sampling of realizations of the nonlinear equation is practically equivalent to the sampling of the linear ones. We study further this result by analyzing, for both temperature regimes, the driving noise of the linear equations in comparison to that of the nonlinear equations.

1.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
2.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
);
G. V.
Gorini
,
A.
Kossakowski
, and
E. C. G.
Sudarshan
,
J. Math. Phys.
17
,
821
(
1976
).
3.
See, for example
S.
John
and
T.
Quang
,
Phys. Rev. Lett.
74
,
3419
(
1995
);
[PubMed]
B.
Garraway
,
Phys. Rev. A
55
,
2290
(
1997
);
N.
Vats
and
S.
John
,
Phys. Rev. A
58
,
4168
(
1998
).
4.
See, for example,
S.
John
and
T.
Quang
,
Phys. Rev. A
50
,
1764
(
1994
);
[PubMed]
S.
Bay
,
P.
Lambropoulos
, and
K.
Molmer
,
Phys. Rev. Lett.
79
,
2654
(
1997
);
M. W.
Jack
and
J. J.
Hope
,
Phys. Rev. A
63
,
043803
(
2001
);
G. M.
Nikolopoulos
and
P.
Lambropoulos
,
Phys. Rev. A
61
,
053812
(
2000
).
5.
I.
de Vega
,
D.
Alonso
, and
P.
Gaspard
,
Phys. Rev. A
71
,
023812
(
2005
).
6.
J. J.
Hope
,
Phys. Rev. A
55
,
R2531
(
1997
);
J. J.
Hope
,
G. M.
Moy
,
M. J.
Collet
, and
C. M.
Savage
,
Phys. Rev. A
61
,
023603
(
2000
).
7.
T.
Yu
,
L.
Diósi
,
N.
Gisin
, and
W. T.
Strunz
,
Phys. Rev. A
60
,
91
(
1999
).
8.
P.
Gaspard
and
M.
Nagaoka
,
J. Chem. Phys.
13
,
5676
(
1999
).
9.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
(
1957
);
A. G.
Redfield
Adv. Magn. Reson.
1
,
1
(
1965
).
10.
M. B.
Plenio
and
P. L.
Knight
,
Rev. Mod. Phys.
70
,
101
(
1998
).
11.
L.
Diósi
,
Phys. Lett. A
132
,
233
(
1988
).
12.
L.
Diósi
,
J. Phys. A
21
,
233
(
1988
).
13.
J.
Dalibard
,
Y.
Castin
, and
K.
Molmer
,
Phys. Rev. Lett.
68
,
580
(
1992
).
14.
C. W.
Gardiner
,
A. S.
Parkins
, and
P.
Zoller
,
Phys. Rev. A
46
,
4363
(
1992
).
15.
N.
Gisin
and
I. C.
Percival
,
J. Phys. A
25
,
5677
(
1992
).
16.
N.
Gisin
and
I. C.
Percival
,
J. Phys. A
26
,
2245
(
1993
).
17.
L.
Diósi
,
N.
Gisin
, and
W. T.
Strunz
,
Phys. Rev. A
58
,
1699
(
1998
).
18.
A.
Imamoglu
,
Phys. Lett. A
224
,
3650
(
1994
).
19.
L.
Diósi
and
W. T.
Strunz
,
Phys. Lett. A
235
,
569
(
1997
).
20.
M. W.
Jack
and
M. J.
Collet
,
Phys. Rev. A
61
,
062106
(
2000
).
21.
J. D.
Cresser
,
Laser Phys.
10
,
1
, (
2000
).
22.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys. (N.Y.)
24
,
118
(
1963
).
23.
W. T.
Strunz
,
Phys. Lett. A
224
,
25
(
1996
).
24.
W. T.
Strunz
(unpublished).
25.
W. T.
Strunz
,
Chem. Phys.
268
,
237
(
2001
).
26.
C. W.
Gardiner
and
P.
Zoller
,
Quantum Noise
, 2nd ed. (
Springer
, Berlin,
2000
).
You do not currently have access to this content.