We report on a computer simulation study of the early stages of the crystallization of molecular nitrogen. First, we study how homogeneous nucleation takes place in supercooled liquid N2 for a moderate degree of supercooling. Using the umbrella sampling technique, we determine the free energy barrier of formation for a critical nucleus of N2. We show that, in accord with Ostwald’s rule of stages, the structure of the critical nucleus is predominantly that of a metastable polymorph (α-N2 for the state point investigated). We then monitor the evolution of several critical nuclei through a series of unbiased molecular dynamics trajectories. The growth of N2 crystallites is accompanied by a structural evolution toward the stable polymorph β-N2. The microscopic mechanism underlying this evolution qualitatively differs from that reported previously. We do not observe any dissolution or reorganization of the α-like core of the nucleus. On the contrary, we show that α-like and β-like blocks coexist in postcritical nuclei. We relate the structural evolution to a greater adsorption rate of β-like molecules on the surface and show that this transition actually starts well within the precritical regime. We also carefully investigate the effect of the system size on the height of the free energy barrier of nucleation and on the structure and size of the critical nucleus.

1.
W.
Ostwald
,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl.
22
,
289
(
1897
).
2.
I. N.
Stranski
and
D.
Totomanow
,
Z. Phys. Chem. Abt. A
163
,
399
(
1933
).
3.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P. N.
Pusey
, and
D. A.
Weitz
,
Science
292
,
258
(
2001
).
4.
J. L.
Harland
,
S. I.
Henderson
,
S. M.
Underwood
, and
W.
van Megen
,
Phys. Rev. Lett.
75
,
3572
(
1995
).
5.
J. L.
Harland
and
W.
van Megen
,
Phys. Rev. E
55
,
3054
(
1997
).
6.
A.
Heymann
,
C.
Stipp
,
C.
Sinn
, and
T.
Palberg
,
J. Colloid Interface Sci.
206
,
119
(
1998
).
7.
S. T.
Yau
and
P. G.
Vekilov
,
Nature (London)
406
,
494
(
2000
).
8.
J. D.
Honeycutt
and
H. C.
Andersen
,
Chem. Phys. Lett.
108
,
535
(
1984
).
9.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
33
,
1439
(
1960
).
10.
M. J.
Mandell
,
J. P.
McTague
, and
A.
Rahman
,
J. Chem. Phys.
64
,
3699
(
1976
).
11.
J. N.
Cape
,
J. L.
Finney
, and
L. V.
Woodcock
,
J. Chem. Phys.
75
,
2366
(
1981
).
12.
R. D.
Mountain
and
P. K.
Basu
,
J. Chem. Phys.
78
,
7318
(
1983
).
13.
C. S.
Hsu
and
A.
Rahman
,
J. Chem. Phys.
70
,
5234
(
1979
).
14.
C. S.
Hsu
and
A.
Rahman
,
J. Chem. Phys.
71
,
4974
(
1979
).
15.
R. D.
Mountain
and
A. C.
Brown
,
J. Chem. Phys.
80
,
2730
(
1984
).
16.
M.
Tanemura
,
Y.
Hiwatari
,
H.
Matsuda
,
T.
Ogawa
,
N.
Ogita
, and
A.
Ueda
,
Prog. Theor. Phys.
58
,
1079
(
1977
).
17.
W. C.
Swope
and
H. C.
Andersen
,
Phys. Rev. B
41
,
7042
(
1990
).
18.
M. J.
Mandell
,
J. P.
McTague
, and
A.
Rahman
,
J. Chem. Phys.
66
,
3070
(
1977
).
19.
F. F.
Abraham
,
J. Chem. Phys.
72
,
359
(
1980
).
20.
J.
Yang
,
H.
Gould
, and
W.
Klein
,
Phys. Rev. Lett.
60
,
2665
(
1988
).
21.
S.
Nosé
and
F.
Yonezawa
,
J. Chem. Phys.
84
,
1803
(
1986
).
22.
J. S.
van Duijneveldt
and
D.
Frenkel
,
J. Chem. Phys.
96
,
4655
(
1992
).
23.
P. R. ten
Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Phys. Rev. Lett.
75
,
2714
(
1995
).
24.
P. R. ten
Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
25.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
26.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
27.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
28.
R. L.
Mills
,
B.
Olinger
, and
D. T.
Cromer
,
J. Chem. Phys.
84
,
2837
(
1986
).
29.
R. D.
Etters
,
V.
Chandrasekharan
,
E.
Uzan
, and
K.
Kobashi
,
Phys. Rev. B
33
,
8615
(
1986
).
30.
B.
Kuchta
,
K.
Rohleder
,
R. D.
Etters
, and
J.
Belak
,
J. Chem. Phys.
102
,
3349
(
1995
).
31.
B.
Kuchta
,
K.
Rohleder
,
D.
Swanson
, and
R. D.
Etters
,
J. Chem. Phys.
106
,
6771
(
1997
).
32.
J.
Belak
,
R.
LeSar
, and
R. D.
Etters
,
J. Chem. Phys.
92
,
5430
(
1990
).
33.
E. J.
Meijer
,
D.
Frenkel
,
R. A.
LeSar
, and
A. J. C.
Ladd
,
J. Chem. Phys.
92
,
7570
(
1990
).
34.
R.
Fabianski
,
B.
Kuchta
,
L.
Firlej
, and
R. D.
Etters
,
J. Chem. Phys.
112
,
6745
(
2000
).
35.
V. M.
Cheng
,
W. B.
Daniels
, and
R. K.
Crawford
,
Phys. Rev. B
11
,
3972
(
1975
).
36.
W. F.
Giauque
and
J. O.
Clayton
,
J. Am. Chem. Soc.
55
,
4875
(
1933
).
37.
L.
Vergard
,
Z. Phys.
88
,
240
(
1934
).
38.
C. A.
Swenson
,
J. Chem. Phys.
23
,
1963
(
1955
).
39.
I. N.
Krupskii
,
A.
Prokhvatilov
, and
A.
Erenburg
,
Fiz. Nizk. Temp.
1
,
359
(
1975
).
40.
V.
Manzhelii
,
A.
Tolkachev
, and
E.
Voitovich
,
Phys. Status Solidi
13
,
351
(
1966
).
41.
D.
Heberlein
,
E.
Adams
, and
T.
Scott
,
J. Low Temp. Phys.
2
,
449
(
1970
).
42.
B.
Quentrec
,
Phys. Rev. A
12
,
282
(
1975
).
43.
J.-M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
Chem. Phys. Lett.
375
,
612
(
2003
).
44.
J.-M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
J. Am. Chem. Soc.
126
,
12286
(
2004
).
45.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Faraday Discuss.
104
,
93
(
1996
).
46.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Non-equilibrium Liquids
(
Academic
, London,
1990
).
47.
P. J.
Daivis
and
D. J.
Evans
,
J. Chem. Phys.
100
,
541
(
1994
).
48.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
, Oxford,
1987
).
49.
S.
Auer
and
D.
Frenkel
,
Nature (London)
409
,
1020
(
2001
).
50.
S.
Auer
and
D.
Frenkel
,
Nature (London)
413
,
711
(
2001
).
51.
S.
Auer
and
D.
Frenkel
,
J. Chem. Phys.
120
,
3015
(
2004
).
52.
T.
Schilling
and
D.
Frenkel
,
Phys. Rev. Lett.
92
,
085505
(
2004
).
53.
B.
O’Malley
and
I.
Snook
,
Phys. Rev. Lett.
90
,
085702
(
2003
).
54.
I.
Volkov
,
M.
Cieplak
,
J.
Koplik
, and
J. R.
Banavar
,
Phys. Rev. E
66
,
061401
(
2002
).
55.
N.
Blagden
and
R.
Davey
,
Cryst. Growth Des.
3
,
873
(
2003
).
56.
K.
Bhattacharya
,
S.
Conti
,
G.
Zanzotto
, and
J.
Zimmer
,
Nature (London)
428
,
55
(
2004
).
57.
P. R.
ten Wolde
and
D.
Frenkel
,
Science
277
,
1975
(
1997
).
You do not currently have access to this content.