A comprehensive study of the unimolecular dissociation of the N3 radical on the ground doublet and excited quartet potential energy surfaces has been carried out with multireference single and double excitation configuration interaction and second-order multireference perturbation methods. Two forms of the N3 radical have been located in the linear and cyclic region of the lowest doublet potential energy surface with an isomerization barrier of 62.2 kcal/mol above the linear N3. Three equivalent C2v minima of cyclic N3 are connected by low barrier, meaning the molecule is free to undergo pseudorotation. The cyclic N3 is metastable with respect to ground state products, N(4S)+N2, and dissociation must occur via intersystem crossing to a quartet potential energy surface. Minima on the seams of crossing between the doublet and quartet potential surfaces are found to lie substantially higher in energy than the cyclic N3 minima. This strongly suggests that cyclic N3 possesses a long collision-free lifetime even if formed with substantial internal excitation.

1.
J. P.
Zheng
,
J.
Waluk
,
J.
Spanget-Larsen
,
D. M.
Blake
, and
J. G.
Radziszewski
,
Chem. Phys. Lett.
328
,
227
(
2000
).
2.
T. J.
Lee
and
J. M. L.
Martin
,
Chem. Phys. Lett.
357
,
319
(
2002
).
3.
J. P.
Calfa
,
K. G.
Phelan
, and
F. T.
Bonner
,
Inorg. Chem.
21
,
521
(
1982
);
R. J.
Gowland
,
K. R.
Howes
, and
G.
Stedman
,
J. Chem. Soc. Dalton Trans.
5
,
797
(
1992
).
4.
A.
Vij
,
J. G.
Pavlovich
,
W. W.
Wilson
,
V.
Vij
, and
K. O.
Christe
,
Angew. Chem., Int. Ed.
41
,
3051
(
2002
).
5.
K. M.
Dunn
and
K.
Morokuma
,
J. Chem. Phys.
102
,
4904
(
1995
);
W. J.
Lauderdale
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Phys. Chem.
96
,
1173
(
1992
);
T. J.
Lee
and
C. E.
Dateo
,
Chem. Phys. Lett.
345
,
295
(
2001
);
T. J.
Lee
and
J. E.
Rice
,
J. Chem. Phys.
94
,
1215
(
1991
);
D. R.
Yarkony
,
J. Am. Chem. Soc.
114
,
5406
(
1992
);
H.
Ostmark
,
O.
Launila
,
S.
Wallin
, and
R.
Tryman
,
J. Raman Spectrosc.
32
,
195
(
2001
);
M. N.
Glukhovtsev
,
H. J.
Jiao
, and
P. V.
Schleyer
,
Inorg. Chem.
35
,
7124
(
1996
);
A. A.
Korkin
,
A.
Balkova
,
R. J.
Bartlett
,
R. J.
Boyd
, and
P. V.
Schleyer
,
J. Phys. Chem.
100
,
5702
(
1996
);
M.
Bittererova
,
T.
Brinck
, and
H.
Ostmark
,
J. Phys. Chem. A
104
,
11999
(
2000
).
6.
M.
Bittererova
,
H.
Ostmark
, and
T.
Brinck
,
J. Chem. Phys.
116
,
9740
(
2002
).
7.
R.
Klein
and
S.
Biskupic
,
Chem. Pap.-Chem. Zvesti
47
,
143
(
1993
).
8.
J.
Wasilewski
,
J. Chem. Phys.
105
,
10969
(
1996
).
9.
M.
Bittererova
,
H.
Ostmark
, and
T.
Brinck
,
Chem. Phys. Lett.
347
,
220
(
2001
);
M.
Bittererova
,
T.
Brinck
, and
H.
Ostmark
,
Chem. Phys. Lett.
340
,
597
(
2001
);
M.
Tobita
and
R. J.
Bartlett
,
J. Phys. Chem. A
105
,
4107
(
2001
);
A.
Larson
,
M.
Larsson
, and
H.
Ostmark
,
J. Chem. Soc., Faraday Trans.
93
,
2963
(
1997
);
M. T.
Nguyen
and
T. K.
Ha
,
Chem. Ber.
129
,
1157
(
1996
).
10.
M. L.
Leininger
,
T. J.
Van Huis
, and
H. F.
Schaefer
,
J. Phys. Chem. A
101
,
4460
(
1997
).
11.
F.
Cacace
,
G.
de Petris
, and
A.
Troiani
,
Science
295
,
480
(
2002
).
12.
L. E.
Fried
,
M. R.
Manaa
,
P. F.
Pagoria
, and
R. L.
Simpson
,
Annu. Rev. Mater. Sci.
31
,
291
(
2001
).
13.
N.
Hansen
and
A. M.
Wodtke
,
J. Phys. Chem. A
107
,
10608
(
2003
).
14.
A.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
).
15.
B. A.
Thrush
,
Proc. R. Soc. London, Ser. A
235
,
143
(
1956
).
16.
A. E.
Douglas
and
W. J.
Jones
,
Can. J. Phys.
43
,
2216
(
1965
).
17.
R. A.
Beaman
,
T.
Nelson
,
D. S.
Richards
, and
D. W.
Setser
,
J. Phys. Chem.
91
,
6090
(
1987
).
18.
C. R.
Brazier
,
P. F.
Bernath
,
J. B.
Burkholder
, and
C. J.
Howard
,
J. Chem. Phys.
89
,
1762
(
1988
).
19.
R.
Pahnke
,
S. H.
Ashworth
, and
J. M.
Brown
,
Chem. Phys. Lett.
147
,
179
(
1988
).
20.
R. J.
Tian
,
J. C.
Facelli
, and
J.
Michl
,
J. Phys. Chem.
92
,
4073
(
1988
).
21.
R. E.
Continetti
,
D. R.
Cyr
,
R. B.
Metz
, and
D. M.
Neumark
,
Chem. Phys. Lett.
182
,
406
(
1991
).
22.
R. E.
Continetti
,
D. R.
Cyr
,
D. L.
Osborn
,
D. J.
Leahy
, and
D. M.
Neumark
,
J. Chem. Phys.
99
,
2616
(
1993
).
23.
M. J.
Pellerite
,
R. L.
Jackson
, and
J. I.
Brauman
,
J. Phys. Chem.
85
,
1624
(
1981
).
24.
C.
Petrongolo
,
J. Mol. Struct.
175
,
215
(
1988
).
25.
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
J. Chem. Phys.
90
,
6469
(
1989
).
26.
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
J. Chem. Phys.
93
,
4485
(
1990
).
27.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
28.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
29.
P.
Celani
and
H.-J.
Werner
,
J. Chem. Phys.
112
,
5546
(
2000
).
30.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
31.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
);
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
32.
D. G.
Fedorov
and
M. S.
Gordon
,
J. Chem. Phys.
112
,
5611
(
2000
).
33.
M. W.
Schmidt
,
K. K.
Baldridge
, and
J. A.
Boatz
,
J. Comput. Chem.
14
,
1347
(
1993
).
34.
N.
Koga
and
K.
Morokuma
,
Chem. Phys. Lett.
119
,
371
(
1985
).
35.
G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand, New York, 1966).
36.
R.
Prasad
,
J. Chem. Phys.
119
,
9549
(
2003
).
37.
NIST Atomic Spectra Database.
38.
M.
Desouter-Lecomte
and
J. C.
Lorquet
,
J. Chem. Phys.
66
,
4006
(
1977
).
39.
MOLPRO is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, M. Schütz, et al..
This content is only available via PDF.
You do not currently have access to this content.