The dispersed fluorescence spectra following the excitation of several Ã←X̃ vibronic bands of HCCl and DCCl at visible wavelengths were successfully acquired in a discharge supersonic free jet expansion using an intensified charge-coupled device detector. The dispersed fluorescence spectra reveal more details of the 1 A state vibrational structure in these molecules than previous reports. Dispersed fluorescence spectra of all four isotopomers (HC35Cl,HC37Cl,DC35Cl, and DC37Cl) were obtained. These dispersed fluorescence spectra exhibit the vibrational structures up to ≈6000 cm−1 above the zero-point level and determine the vibrational structures of HC37Cl and DC37Cl. Complete vibrational parameters including fundamental frequencies, anharmonicities, and coupling constants were determined for the HCCl/DCCl 1 A state. Furthermore, perturbations from the background triplet state ã3 A and emission to triplet state levels were observed in the spectra. The singlet-triplet energy gap from the zero-point level could be determined to be 2167 cm−1 (6.20±0.05 kcal/mol) in HCCl and to be 2187 cm−1 (6.25±0.05 kcal/mol) in DCCl. Additionally, some of the Ã←X̃ excitation spectrum are reported for HCCl and DCCl.

1.
G.
Herzberg
and
J. W. C.
Johns
,
Proc. R. Soc. London, Ser. A
295
,
107
(
1966
).
2.
K.
Kobayashi
,
L. D.
Pride
, and
T. J.
Sears
,
J. Phys. Chem. A
104
,
10119
(
2000
), and references therein.
3.
A. J.
Merer
and
D. N.
Travis
,
Can. J. Phys.
44
,
525
(
1966
).
4.
M. E.
Jacox
and
D. E.
Milligan
,
J. Chem. Phys.
47
,
1626
(
1967
).
5.
M.
Kakimoto
,
S.
Saito
, and
E.
Hirota
,
J. Mol. Spectrosc.
97
,
194
(
1983
).
6.
Y.
Qiu
,
S.
Zhou
, and
J.
Shi
,
Chem. Phys. Lett.
136
,
93
(
1987
).
7.
M. K.
Gilles
,
K. M.
Ervin
,
J.
Ho
, and
W. C.
Lineberger
,
J. Phys. Chem.
96
,
1130
(
1992
).
8.
S.
Xu
,
K. A.
Beran
, and
M. D.
Harmony
,
J. Phys. Chem.
98
,
2742
(
1994
).
9.
B.-C.
Chang
and
T. J.
Sears
,
J. Chem. Phys.
102
,
6347
(
1995
).
10.
B.-C.
Chang
and
T. J.
Sears
,
J. Mol. Spectrosc.
173
,
391
(
1995
).
11.
B.-C.
Chang
,
R.
Fei
, and
T. J.
Sears
,
J. Mol. Spectrosc.
183
,
341
(
1997
).
12.
B.-C.
Chang
and
T. J.
Sears
,
J. Chem. Phys.
105
,
2135
(
1996
).
13.
B.-C.
Chang
,
M. L.
Costen
,
A. J.
Marr
,
G.
Ritchie
,
G. E.
Hall
, and
T. J.
Sears
,
J. Mol. Spectrosc.
202
,
131
(
2000
), and references therein.
14.
A.
Lin
,
K.
Kobayashi
,
H.-G.
Yu
,
G. E.
Hall
,
J. T.
Muckerman
,
T. J.
Sears
, and
A. J.
Merer
,
J. Mol. Spectrosc.
214
,
216
(
2002
).
15.
T.-C.
Tsai
,
C.-W.
Chen
, and
B.-C.
Chang
,
J. Chem. Phys.
115
,
766
(
2001
).
16.
C.-W.
Chen
,
T.-C.
Tsai
, and
B.-C.
Chang
,
J. Mol. Spectrosc.
209
,
254
(
2001
).
17.
C.-W.
Chen
,
T.-C.
Tsai
, and
B.-C.
Chang
,
Chem. Phys. Lett.
347
,
73
(
2001
).
18.
C.-L.
Lee
,
M.-L.
Liu
, and
B.-C.
Chang
,
J. Chem. Phys.
117
,
3263
(
2002
).
19.
M.-L.
Liu
,
C.-L.
Lee
,
A.
Bezant
,
G.
Tarczay
,
R. J.
Clark
,
T. A.
Miller
, and
B.-C.
Chang
,
Phys. Chem. Chem. Phys.
5
,
1352
(
2003
).
20.
C.-L.
Lee
,
M.-L.
Liu
, and
B.-C.
Chang
,
Phys. Chem. Chem. Phys.
5
,
3859
(
2003
).
21.
H.
Fan
,
I.
Inoescu
,
C.
Annesley
,
J.
Cummins
,
M.
Bowers
, and
S. A.
Reid
,
J. Mol. Spectrosc.
225
,
43
(
2004
).
22.
B.-C.
Chang
,
R.
Fei
, and
T. J.
Sears
,
J. Mol. Spectrosc.
183
,
341
(
1997
).
23.
G. E.
Scuseria
,
M.
Duran
,
R. G. A.
Maclagan
, and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
108
,
3248
(
1986
).
24.
E. A.
Carter
and
W. A.
Goddard
III
,
J. Chem. Phys.
88
,
1752
(
1988
).
25.
K. K.
Irikura
,
W. A.
Goddard
III
, and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
114
,
48
(
1992
).
26.
M.
Schwartz
and
P.
Marshall
,
J. Phys. Chem.
103
,
7900
(
1999
).
27.
B.
Hajgató
,
H. M. T.
Nguyen
,
T.
Veszprémi
, and
M. T.
Nguyen
,
Phys. Chem. Chem. Phys.
2
,
5041
(
2000
).
28.
H.-G.
Yu
,
T.
Gonzalez-Lezana
,
A. J.
Marr
,
J. T.
Muckerman
, and
T. J.
Sears
,
J. Chem. Phys.
115
,
5433
(
2001
).
29.
H.-G. Yu, R. Bird, G. E. Hall, J. T. Muckerman, and T. J. Sears, J. Mol. Spectrosc (to be published).
This content is only available via PDF.
You do not currently have access to this content.