Several simple quantum correction factors for classical line shapes, connecting dipole autocorrelation functions to infrared spectra, are compared to exact quantum data in both the frequency and time domain. In addition, the performance of the centroid molecular dynamics approach to line shapes and time-correlation functions is compared to that of these a posteriori correction schemes. The focus is on a tunable model that is able to describe typical hydrogen bonding scenarios covering continuously phenomena from tunneling via low-barrier hydrogen bonds to centered hydrogen bonds with an emphasis on floppy modes and anharmonicities. For these classes of problems, the so-called “harmonic approximation” is found to perform best in most cases, being, however, outperformed by explicit centroid molecular dynamics calculations. In addition, a theoretical analysis of quantum correction factors is carried out within the framework of the fluctuation-dissipation theorem. It can be shown that the harmonic approximation not only restores the detailed balance condition like all other correction factors, but that it is the only one that also satisfies the fluctuation-dissipation theorem. Based on this analysis, it is proposed that quantum corrections of response functions in general should be based on the underlying Kubo-transformed correlation functions.

1.
R. J.
Saykally
,
Science
239
,
157
(
1988
).
2.
Structure and Conformations of Non-Rigid Molecules, edited by J. Laane, M. Dakkouri, B. van der Veken, and H. Oberhammer (Kluwer, Dordrecht, 1993).
3.
D. W.
Boo
,
Z. F.
Liu
,
A. G.
Suits
,
J. S.
Tse
, and
Y. T.
Lee
,
Science
269
,
57
(
1995
);
E. T.
White
,
J.
Tang
, and
T.
Oka
,
Science
284
,
135
(
1999
);
see also
D.
Marx
and
M.
Parrinello
,
Nature (London)
375
,
216
(
1995
);
D.
Marx
and
M.
Parrinello
,
Science
284
,
59
(
1999
).
4.
M. W.
Crofton
,
M.-F.
Jagod
,
B. D.
Rehfuss
, and
T.
Oka
,
J. Chem. Phys.
91
,
5139
(
1989
);
C. M.
Gabrys
,
D.
Uy
,
M.-F.
Jagod
,
T.
Oka
, and
T.
Amano
,
J. Phys. Chem.
99
,
15611
(
1995
);
see also
D.
Marx
and
M.
Parrinello
,
Science
271
,
179
(
1996
).
5.
W. H.
Robertson
,
E. G.
Diken
,
E. A.
Price
,
J.-W.
Shin
, and
M. A.
Johnson
,
Science
299
,
1367
(
2003
).
6.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
Science
275
,
817
(
1997
).
7.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brümmer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Wöste
,
Science
299
,
1375
(
2003
).
8.
M.
Okumura
,
L. I.
Yeh
,
J. D.
Myers
, and
Y. T.
Lee
,
J. Phys. Chem.
94
,
3416
(
1990
);
C.
Chaudhuri
,
Y.-S.
Wang
,
J. C.
Jiang
,
Y. T.
Lee
,
H.-C.
Chang
, and
G.
Niedner-Schatteburg
,
Mol. Phys.
99
,
1161
(
2001
).
9.
G.
Osmann
,
P. R.
Bunker
,
W. P.
Kraemer
, and
P.
Jensen
,
Chem. Phys. Lett.
309
,
299
(
1999
).
10.
L.
Knoll
,
Z.
Vager
, and
D.
Marx
,
Phys. Rev. A
67
,
022506
(
2003
).
11.
G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, Oxford, 1997).
12.
R. G.
Gordon
,
J. Chem. Phys.
43
,
1307
(
1965
).
13.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
14.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
);
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
417
,
925
(
2002
).
15.
M.
Benoit
,
A. H.
Romero
, and
D.
Marx
,
Phys. Rev. Lett.
89
,
145501
(
2002
);
M.
Benoit
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
392
,
258
(
1998
).
16.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10070
(
1993
);
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
);
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
1996
);
M.
Pavese
,
D. R.
Berard
, and
G. A.
Voth
,
Chem. Phys. Lett.
300
,
93
(
1999
).
17.
D.
Marx
,
M. E.
Tuckerman
, and
G. J.
Martyna
,
Comput. Phys. Commun.
118
,
166
(
1999
).
18.
P.
Schofield
,
Phys. Rev. Lett.
4
,
239
(
1960
).
19.
P. A.
Egelstaff
,
Adv. Phys.
11
,
203
(
1962
);
see Eqs. (4) and (5).
20.
J.
Borysow
,
M.
Moraldi
, and
L.
Frommhold
,
Mol. Phys.
56
,
913
(
1985
).
21.
B.
Guillot
,
J. Chem. Phys.
95
,
1543
(
1991
);
see in particular Eq. (1) and Fig. 1.
22.
S. A.
Egorov
and
J. L.
Skinner
,
Chem. Phys. Lett.
293
,
469
(
1998
).
23.
S. A.
Egorov
,
K. F.
Everitt
, and
J. L.
Skinner
,
J. Phys. Chem. A
103
,
9494
(
1999
).
24.
K. F.
Everitt
,
J. L.
Skinner
, and
B. M.
Ladanyi
,
J. Chem. Phys.
116
,
179
(
2002
).
25.
H.
Kim
and
P. J.
Rossky
,
J. Phys. Chem. B
106
,
8240
(
2002
).
26.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
27.
D. Marx and J. Hutter, in Ab Initio Molecular Dynamics: Theory and Implementation, Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst, (NIC, FZ Jülich, 2000), pp. 301–449;
for downloads see www.theochem.rub.de/go/cprev.html
28.
A.
Debernardi
,
M.
Bernasconi
,
M.
Cardona
, and
M.
Parrinello
,
Appl. Phys. Lett.
71
,
2692
(
1997
).
29.
M.
Bernasconi
,
P. L.
Silvestrelli
, and
M.
Parrinello
,
Phys. Rev. Lett.
81
,
1235
(
1998
).
30.
B. J.
Berne
and
G. D.
Harp
,
Adv. Chem. Phys.
17
,
63
(
1970
).
31.
D. Chandler, Introduction to Modern Statistical Mechanics, (Oxford University Press, Oxford, 1987).
32.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2357
(
1999
).
33.
R.
Ramı́rez
and
T.
López-Ciudad
,
Phys. Rev. Lett.
83
,
4456
(
1999
).
34.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Chem. Phys.
117
,
11
277
(
2002
).
35.
D. A. McQuarrie, Statistical Mechanics (Harper & Row Publishers, New York, 1976).
36.
M. Cardona, in Light Scattering in Solids II, edited by M. Cardona and G. Güntherodt (Springer, Berlin, 1982), p. 58.
37.
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer, Berlin, 1991).
38.
R.
Zwanzig
,
Annu. Rev. Phys. Chem.
16
,
67
(
1969
).
39.
R. Ramı́rez and T. López-Ciudad, in Dynamic Properties via Fixed Centroid Path Integrals, Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, edited by J. Grotendorst, D. Marx, and A. Muramatsu (NIC, FZ Jülich, 2002), pp. 325–375;
for downloads and audio-visual lecture Notes see www.theochem.rub.de/go/cprev.html
40.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
47
,
1651
(
1993
);
D.
Vanderbilt
and
R. D.
King-Smith
,
Phys. Rev. B
48
,
4442
(
1993
);
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
);
R.
Resta
,
Rev. Mod. Phys.
66
,
899
(
1994
);
R.
Resta
,
J. Phys.: Condens. Matter
14
,
R625
(
2002
).
41.
P. G.
Johannsen
,
J. Phys.: Condens. Matter
10
,
2241
(
1998
).
42.
W.
Janke
and
H.
Kleinert
,
Chem. Phys. Lett.
137
,
162
(
1987
).
43.
R.
Ramı́rez
,
T.
López-Ciudad
, and
J. C.
Noya
,
Phys. Rev. Lett.
81
,
3303
(
1998
).
44.
A.
Horikoshi
and
K.
Kinugawa
,
J. Chem. Phys.
119
,
4629
(
2003
).
45.
M. Schmitz and P. Tavan, J. Chem. Phys. (to be published).
This content is only available via PDF.
You do not currently have access to this content.