A method for calculating the various components of the magnetically induced current-density tensor using gauge-including atomic orbitals is described. The method is formulated in the framework of analytical derivative theory, thus enabling implementation at the Hartree–Fock self-consistent-field (HF-SCF) as well as at electron-correlated levels. First-order induced current densities have been computed up to the coupled-cluster singles and doubles level (CCSD) augmented by a perturbative treatment of triple excitations [CCSD(T)] for carbon dioxide and benzene and up to the full coupled-cluster singles, doubles, and triples (CCSDT) level in the case of ozone. The applicability of the gauge including magnetically induced current method to larger molecules is demonstrated by computing first-order current densities for porphin and hexabenzocoronene at the HF-SCF and density-functional theory level. Furthermore, a scheme for obtaining quantitative values for the induced currents in a molecule via numerical integration over the current flow is presented. For benzene, a perpendicular magnetic field induces a (field dependent) ring current of 12.8 nA T−1 at the HF-SCF level using a triple-zeta basis set augmented with polarization functions (TZP). At the CCSD(T)/TZP level the induced current was found to be 11.4 nA T−1. Gauge invariance and its relation to charge-current conservation is discussed.

1.
J.
Gauss
and
J. F.
Stanton
,
Adv. Chem. Phys.
123
,
355
(
2002
).
2.
J.
Gauss
,
K.
Ruud
, and
T.
Helgaker
,
J. Chem. Phys.
105
,
2804
(
1996
).
3.
F.
London
,
J. Phys. Radium
8
,
397
(
1937
).
4.
H.
Hameka
,
Mol. Phys.
1
,
203
(
1958
).
5.
R.
Ditchfield
,
Mol. Phys.
27
,
789
(
1974
).
6.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
,
J. Am. Chem. Soc.
112
,
8251
(
1990
).
7.
P. Pulay, J. F. Hinton, and K. Wolinski, in Nuclear Magnetic Shieldings and Molecular Structure, edited by J. A. Tossell, NATO ASI Series C (Kluwer, Dordrecht, 1993), Vol. 386, p. 243.
8.
J.
Gauss
,
Chem. Phys. Lett.
191
,
614
(
1992
).
9.
M.
Häser
,
R.
Ahlrichs
,
H. P.
Baron
,
P.
Weis
, and
H.
Horn
,
Theor. Chim. Acta
83
,
551
(
1992
).
10.
K.
Ruud
,
T.
Helgaker
,
R.
Kobayashi
,
P.
Jørgensen
,
K. L.
Bak
, and
H. J. A.
Jensen
,
J. Chem. Phys.
100
,
8178
(
1994
).
11.
J. R.
Cheeseman
,
G. W.
Trucks
,
T. A.
Keith
, and
M. J.
Frisch
,
J. Chem. Phys.
104
,
5497
(
1996
).
12.
J.
Gauss
,
J. Chem. Phys.
99
,
3629
(
1993
).
13.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
102
,
251
(
1995
).
14.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
104
,
2574
(
1996
).
15.
J.
Gauss
,
Chem. Phys. Lett.
229
,
198
(
1994
).
16.
J.
Gauss
and
J. F.
Stanton
,
Phys. Chem. Chem. Phys.
2
,
2047
(
2000
).
17.
J.
Gauss
,
J. Chem. Phys.
116
,
4773
(
2002
).
18.
A. M.
Lee
,
N. C.
Handy
, and
S. M.
Colwell
,
J. Chem. Phys.
103
,
10095
(
1995
).
19.
G.
Schreckenbach
and
T.
Ziegler
,
J. Phys. Chem.
99
,
606
(
1995
).
20.
G.
Rauhut
,
S.
Puyear
,
K.
Wolinski
, and
P.
Pulay
,
J. Phys. Chem.
100
,
6310
(
1996
).
21.
D. B.
Chesnut
and
C. K.
Foley
,
Chem. Phys. Lett.
118
,
316
(
1985
).
22.
D. B.
Chesnut
and
K. D.
Moore
,
J. Comput. Chem.
10
,
648
(
1985
).
23.
M.
Kallay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
24.
T.
Helgaker
,
M.
Jaszunski
, and
K.
Ruud
,
Chem. Rev. (Washington, D.C.)
99
,
293
(
1999
).
25.
P. Pulay, in Modern Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, Singapore, 1995), Vol. 2, p. 1191.
26.
P.
Lazzeretti
,
Prog. Nucl. Magn. Reson. Spectrosc.
36
,
1
(
2000
).
27.
P. Lazzeretti, in Encyclopedia of Computational Chemistry, edited by P. von Ragué Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, New York, 1998), Vol. 3, p. 1659.
28.
T. A.
Keith
and
R. F. W.
Bader
,
Chem. Phys. Lett.
210
,
223
(
1993
).
29.
R. F. W.
Bader
and
T. A.
Keith
,
J. Chem. Phys.
99
,
3683
(
1993
).
30.
P.
Lazzeretti
,
M.
Malagoli
, and
R.
Zanasi
,
Chem. Phys. Lett.
220
,
299
(
1994
).
31.
S.
Coriani
,
P.
Lazzeretti
,
M.
Malagoli
, and
R.
Zanasi
,
Theor. Chim. Acta
89
,
181
(
1994
).
32.
R.
Zanasi
,
P.
Lazzeretti
,
M.
Malagoli
, and
F.
Piccinini
,
J. Chem. Phys.
102
,
7150
(
1995
).
33.
R.
Zanasi
,
J. Chem. Phys.
105
,
1460
(
1996
).
34.
P. W.
Fowler
,
R.
Zanasi
,
B.
Cadioli
, and
E.
Steiner
,
Chem. Phys. Lett.
251
,
132
(
1996
).
35.
R.
Zanasi
and
P.
Lazzeretti
,
Mol. Phys.
92
,
609
(
1997
).
36.
P. W.
Fowler
,
E.
Steiner
,
B.
Cadioli
, and
R.
Zanasi
,
J. Phys. Chem. A
102
,
7297
(
1998
).
37.
A.
Ligabue
,
S. P. A.
Sauer
, and
P.
Lazzeretti
,
J. Chem. Phys.
118
,
6830
(
2003
).
38.
F. R.
Salsbury
, Jr.
and
R. A.
Harris
,
J. Chem. Phys.
104
,
5497
(
1996
).
39.
J. A. Elvidge and L. M. Jackman, J. Chem. Soc. 859 (1961).
40.
J. A.
Pople
and
K. G.
Untch
,
J. Am. Chem. Soc.
88
,
4811
(
1966
).
41.
J.
Jusélius
and
D.
Sundholm
,
Phys. Chem. Chem. Phys.
1
,
3429
(
1999
).
42.
J.
Jusélius
and
D.
Sundholm
,
Phys. Chem. Chem. Phys.
2
,
2145
(
2000
).
43.
J.
Jusélius
and
D.
Sundholm
,
J. Org. Chem.
65
,
5233
(
2000
).
44.
J.
Jusélius
and
D.
Sundholm
,
Phys. Chem. Chem. Phys.
3
,
2433
(
2001
).
45.
J.
Jusélius
,
M.
Straka
, and
D.
Sundholm
,
J. Phys. Chem. A
105
,
9939
(
2001
).
46.
R. J. F.
Berger
,
M. A.
Schmidt
,
J.
Jusélius
,
D.
Sundholm
,
P.
Sirsch
, and
H.
Schmidbaur
,
Z. Naturforsch., B: Chem. Sci.
56
,
979
(
2001
).
47.
J.
Jusélius
,
M.
Patzschke
, and
D.
Sundholm
,
J. Mol. Struct.: THEOCHEM
633
,
123
(
2003
).
48.
In the complete basis-set limit, gauge invariance is ensured for variational schemes such as HF-SCF and multiconfigurational SCF, but gauge-invariance is not achieved for nonvariational approaches within CC framework (for a detailed discussion see, for example, Ref. 82).
49.
A. E. Hansen and T. D. Bouman, in Ref. 7, p. 117.
50.
W. Kutzelnigg, C. van Wüllen, U. Fleischer, R. Franke, and T. van Mourik, in Nuclear Magnetic Shieldings and Molecular Structure, edited by J. A. Tossell (Kluwer Academic, Dordrecht, 1993), pp. 141–161.
51.
Handbook of Mathematical Functions edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965).
52.
S. T.
Epstein
,
J. Chem. Phys.
58
,
1592
(
1973
).
53.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
54.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
55.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
), current version: see http://www.turbomole.de
56.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
57.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
58.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
59.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
60.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
61.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
62.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
879
(
1992
), current version: see http://www.aces2.de
63.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
, Chem. Rev. (Washington, D.C.) 101, (2001), aromaticity is the theme of issue 5.chrCHREAY0009-2665
64.
E. D.
Jemmis
and
P.
von Ragué Schleyer
,
J. Am. Chem. Soc.
104
,
4781
(
1982
).
65.
L.
Pauling
,
J. Chem. Phys.
4
,
673
(
1936
).
66.
J. A.
Pople
,
J. Chem. Phys.
24
,
1111
(
1956
).
67.
J. A.
Pople
,
Mol. Phys.
1
,
175
(
1958
).
68.
R.
McWeeny
,
Mol. Phys.
1
,
311
(
1958
).
69.
V. I. Minkin, M. N. Glukhovtsev, and B. Y. Simkin, Aromaticity and Antiaromaticity-Electronic and Structural Aspects (Wiley, New York, 1994).
70.
U.
Fleischer
,
W.
Kutzelnigg
,
P.
Lazzeretti
, and
V.
Mühlenkamp
,
J. Am. Chem. Soc.
116
,
5298
(
1994
).
71.
M.
Bilde
and
A.
Hansen
,
Mol. Phys.
92
,
237
(
1997
).
72.
I.
Morao
and
F. P.
Cossı́o
,
J. Org. Chem.
64
,
1868
(
1999
).
73.
A.
Soncini
,
E.
Steiner
,
P. W.
Fowler
,
R. W. A.
Havenith
, and
L. W.
Jenneskens
,
Chem.-Eur. J.
9
,
2974
(
2003
).
74.
M. K.
Cyrañski
,
T. M.
Krygowski
,
M.
Wisiorowski
,
N. J. R.
van Eikema Hommes
, and
P.
von Ragué Schleyer
,
Angew. Chem., Int. Ed. Engl.
37
,
177
(
1998
).
75.
D.
Lloyd
,
J. Chem. Inf. Comput. Sci.
36
,
442
(
1996
).
76.
E.
Vogel
,
W.
Haas
,
B.
Knipp
,
J.
Lex
, and
H.
Schmickler
,
Angew. Chem., Int. Ed. Engl.
27
,
406
(
1988
).
77.
E.
Vogel
,
J. Heterocycl. Chem.
33
,
1461
(
1996
).
78.
T. D.
Lash
and
S. T.
Chaney
,
Chem.-Eur. J.
2
,
944
(
1996
).
79.
T. D.
Lash
,
J. L.
Romanic
,
J.
Hayes
, and
J. D.
Spence
, Chem. Commun. (Cambridge) 819 (1999).
80.
E.
Steiner
and
P. W.
Fowler
,
ChemPhysChem
3
,
114
(
2002
).
81.
G.
Vignale
and
W.
Kohn
,
Phys. Rev. Lett.
77
,
2037
(
1996
).
82.
T. B.
Pedersen
and
H.
Koch
,
J. Chem. Phys.
106
,
8059
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.