We show that the mixed quantum-classical Liouville equation is equivalent to linearizing the forward-backward action in the influence functional. Derivations are provided in terms of either the diabatic or adiabatic basis sets. An application of the mixed quantum-classical Liouville equation for calculating the memory kernel of the generalized quantum master equation is also presented. The accuracy and computational feasibility of such an approach is demonstrated in the case of a two-level system nonlinearly coupled to an anharmonic bath.
REFERENCES
1.
B. J. Berne, G. Ciccotti, and D. F. Coker, Eds. Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, London, 1998).
2.
3.
P.
Jungwirth
and R. B.
Gerber
, Chem. Rev. (Washington, D.C.)
99
, 1583
(1999
).4.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
5.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
6.
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, New Jersey, 1995).
7.
R. P.
Feynman
and F. L.
Vernon
, Jr., Ann. Phys. (Leipzig)
24
, 118
(1963
).8.
9.
A. O.
Caldeira
and A. J.
Leggett
, Ann. Phys. (Leipzig)
149
, 374
(1983
).10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
N.
Makri
, E.
Sim
, D. E.
Makarov
, and M.
Topaler
, Proc. Natl. Acad. Sci. U.S.A.
93
, 3926
(1996
).22.
23.
24.
25.
26.
A. A.
Golosov
, R. A.
Friesner
, and P.
Pechukas
, J. Chem. Phys.
110
, 138
(1999
).27.
A. A.
Golosov
, R. A.
Friesner
, and P.
Pechukas
, J. Chem. Phys.
112
, 2095
(2000
).28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer, Berlin, 1982).
38.
R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987).
39.
V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Berlin, 2000).
40.
B.
Yoon
, J. M.
Deutch
, and J. H.
Freed
, J. Chem. Phys.
62
, 4687
(1975
).41.
I. Oppenheim, K. E. Shuler, and G. H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (MIT, Cambridge, MA, 1977).
42.
S.
Mukamel
, I.
Oppenheim
, and J.
Ross
, Phys. Rev. A
17
, 1988
(1978
).43.
44.
V.
Romero-Rochin
, A.
Orsky
, and I.
Oppenheim
, Physica A
156
, 244
(1989
).45.
46.
47.
48.
49.
50.
51.
52.
H.
Wang
, X.
Song
, D.
Chandler
, and W. H.
Miller
, J. Chem. Phys.
110
, 4828
(1999
).53.
54.
55.
56.
57.
58.
59.
60.
61.
E.
Rabani
, G.
Krilov
, and B. J.
Berne
, J. Chem. Phys.
112
, 2605
(2000
).62.
Q. Shi and E. Geva, J. Phys. Chem. A (in press).
63.
64.
R. B.
Gerber
, V.
Buch
, and M. A.
Ratner
, J. Chem. Phys.
77
, 3022
(1982
).65.
66.
67.
68.
69.
70.
71.
72.
73.
Y. L.
Volobuev
, M. D.
Hack
, M. S.
Topaler
, and D. G.
Truhlar
, J. Chem. Phys.
112
, 9716
(2000
).74.
75.
76.
77.
A.
Donoso
, D.
Kohen
, and C. C.
Martens
, J. Chem. Phys.
112
, 7345
(2000
).78.
C. Schütte, Konard-Zuse-Zentrum für informationstechnik Belin Preprint SC 99 (June 1999).
79.
M.
Santer
, U.
Manthe
, and G.
Stock
, J. Chem. Phys.
114
, 2001
(2001
).80.
81.
S.
Nielsen
, R.
Kapral
, and G.
Ciccotti
, J. Chem. Phys.
112
, 6543
(2000
).82.
83.
84.
85.
86.
87.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.