We present a theoretical study of the electronic and mechanical properties of graphyne-based nanotubes (GNTs). These semiconducting nanotubes result from the elongation of one-third of the covalent interconnections of graphite-based nanotubes by the introduction of yne groups. The effect of charge injection on the dimensions of GNTs was investigated using tight-binding calculations. Low amounts of electron injection are predicted to cause qualitatively different responses for armchair and zigzag graphyne nanotubes. Although the behavior is qualitatively similar to the usual carbon nanotubes, the charge-induced strains are predicted to be smaller for the GNTs than for ordinary single walled carbon nanotubes.

1.
R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).
2.
R. H.
Baughman
,
H.
Eckhardt
, and
M.
Kertesz
,
J. Chem. Phys.
87
,
6687
(
1987
).
3.
N.
Narita
,
S.
Nagai
,
S.
Suzuki
, and
K.
Nakao
,
Phys. Rev. B
58
,
11009
(
1998
).
4.
N.
Narita
,
S.
Nagai
,
S.
Suzuki
, and
K.
Nakao
,
Phys. Rev. B
62
,
11146
(
2000
).
5.
Y.
Zhou
and
S.
Feng
,
Solid State Commun.
122
,
307
(
2002
).
6.
V. R.
Coluci
,
S. F.
Braga
,
S. B.
Legoas
,
D. S.
Galvão
, and
R. H.
Baughman
,
Phys. Rev. B
68
,
035430
(
2003
).
7.
N.
Hamada
,
S. I.
Sawada
, and
A.
Oshiyama
,
Phys. Rev. Lett.
68
,
1579
(
1992
).
8.
V. R.
Coluci
,
S.
Braga
,
S.
Legoas
,
D. S.
Galvão
, and
R. H.
Baughman
,
Mater. Res. Soc. Symp. Proc.
739
,
H
.
5
6
.
1
(
2003
).
9.
V. R.
Coluci
,
S. F.
Braga
,
S. B.
Legoas
,
D. S.
Galvão
, and
R. H.
Baughman
,
Nanotechnology
15
,
S142
(
2004
).
10.
T.
Kawase
,
Y.
Seirai
,
H. R.
Darabi
,
M.
Oda
,
Y.
Sarakai
, and
K.
Tashiro
,
Angew. Chem., Int. Ed.
42
,
1621
(
2003
).
11.
In the present paper the GNT chiral vector was defined as C⃗h=na⃗1−ma⃗2 in order to adopt the usual (n,m) nomenclature used for graphite-based nanotubes (Ref. 1). The definition is different from the considered in the previous paper about graphyne nanotubes (Ref. 6). Note also that while (n,n) CNTs are armchair and (n,0) nanotubes are zigzag, the reverse is the case for the GNTs using the present chiral vector.
12.
R.
Saito
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
46
,
1804
(
1992
).
13.
P. R.
Wallace
,
Phys. Rev.
71
,
622
(
1947
).
14.
R.
Hoffmann
,
J. Chem. Phys.
39
,
1397
(
1963
).
15.
E.
Clementi
and
D. L.
Raimondi
,
J. Chem. Phys.
38
,
2686
(
1963
).
16.
R. S.
Mülliken
,
C. A.
Rieke
,
D.
Orloff
, and
H.
Orloff
,
J. Chem. Phys.
17
,
1248
(
1949
).
17.
Liu
Yang
,
M. P.
Anantram
,
Jie
Han
, and
J. P.
Lu
,
Phys. Rev. B
60
,
13874
(
1999
).
18.
J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1947).
19.
Yu. N.
Gartstein
,
A. A.
Zakhidov
, and
R. H.
Baughman
,
Phys. Rev. Lett.
89
,
045503
(
2002
).
20.
Yu. N.
Gartstein
,
A. A.
Zakhidov
, and
R. H.
Baughman
,
Phys. Rev. B
68
,
115415
(
2003
).
21.
M.
Verı́ssimo-Alves
,
R. B.
Capaz
,
B.
Koiller
,
E.
Artacho
, and
H.
Chacham
,
Phys. Rev. Lett.
86
,
3372
(
2001
).
22.
M.
Verı́ssimo-Alves
,
B.
Koiller
,
H.
Chacham
, and
R. B.
Capaz
,
Phys. Rev. B
67
,
161401
/
1
(
2003
).
23.
A.
Girlando
,
A.
Painelli
, and
Z. G.
Soos
,
J. Chem. Phys.
98
,
7459
(
1993
).
24.
V. K.
Mitra
,
W.
Risen
Jr.
, and
R. H.
Baughman
,
J. Chem. Phys.
66
,
2731
(
1977
).
25.
This can be verified using the transformations θ→θ+2π/3,δ⃗1→−δ⃗1+δ⃗2,δ⃗2→−δ⃗1,x̂→−(x̂−∛ŷ)/2, and ŷ→−(∛x̂+ŷ)/2.
This content is only available via PDF.
You do not currently have access to this content.