This work is a study of the competition between the two unimolecular reaction channels available to the vinoxy radical (CH2CHO), C–H fission to form H+ketene, and isomerization to the acetyl radical (CH3CO) followed by C–C fission to form CH3+CO. Chloroacetaldehyde (CH2ClCHO) was used as a photolytic precursor to the vinoxy radical in its ground state; photodissociation of chloroacetaldehyde at 193 nm produces vinoxy radicals with internal energies spanning the G3//B3LYP calculated barriers to the two available unimolecular reaction channels. The onset of the CH3+CO channel, via isomerization to the acetyl radical, was found to occur at an internal energy of 41±2 kcal/mol, agreeing well with our calculated isomerization barrier of 40.8 kcal/mol. Branching to the H+ketene channel was too small to be detected; we conclude that the branching to the H+ketene channel must be at least a factor of 200 lower than what is predicted by a RRKM analysis based on our electronic structure calculations. This dramatic result may be explained in part by the presence of a conical intersection at planar geometries along the reaction coordinate leading to H+ketene, which results in electronically nonadiabatic recrossing of the transition state.

1.
A. M.
Schmoltner
,
P. M.
Chu
,
R. J.
Brudzynski
, and
Y. T.
Lee
,
J. Chem. Phys.
91
,
6926
(
1989
).
2.
D. J.
Donaldson
,
I. V.
Okuda
, and
J. J.
Sloan
,
Chem. Phys.
193
,
37
(
1995
).
3.
V.
Schmidt
,
G. Y.
Zhu
,
K. H.
Becker
, and
E. H.
Fink
,
Ber. Bunsenges. Phys. Chem.
89
,
321
(
1985
).
4.
K.
Lorenz
and
R.
Zellner
,
Ber. Bunsenges. Phys. Chem.
88
,
1228
(
1984
);
T. J.
Wallington
,
R.
Liu
,
P.
Dagaut
, and
M. J.
Kurylo
,
Int. J. Chem. Kinet.
20
,
41
(
1988
).
5.
C. K. Westbrook and F. L. Dryer, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 749.
6.
K.
Brezinsky
,
Prog. Energy Combust. Sci.
12
,
1
(
1986
).
7.
D. L.
Osborn
,
H.
Choi
,
D. H.
Mordaunt
,
R. T.
Bise
,
D. M.
Neumark
, and
C. M.
Rohlfing
,
J. Chem. Phys.
106
,
3049
(
1997
).
8.
S.
Matsika
and
D. R.
Yarkony
,
J. Chem. Phys.
117
,
7198
(
2002
).
9.
D. R.
Yarkony
,
J. Phys. Chem. A
105
,
6277
(
2001
).
10.
L. J.
Butler
,
Annu. Rev. Phys. Chem.
49
,
125
(
1998
), and references therein.
11.
M. L.
Morton
,
D. E.
Szpunar
, and
L. J.
Butler
,
J. Chem. Phys.
115
,
204
(
2001
).
12.
J. A.
Mueller
,
B. F.
Parsons
,
L. J.
Butler
,
F.
Qi
,
O.
Sorkhabi
, and
A. G.
Suits
,
J. Chem. Phys.
114
,
4505
(
2001
).
13.
D. E.
Szpunar
,
Y.
Liu
,
M. J.
McCullagh
,
L. J.
Butler
, and
J.
Shu
,
J. Chem. Phys.
119
,
5078
(
2003
).
14.
A. P.
Scott
and
L.
Radom
,
J. Phys. Chem.
101
,
7119
(
1997
).
15.
A. G.
Baboul
,
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
110
,
7650
(
1999
).
16.
J. A. R.
Samson
,
Y.
Shefer
, and
G. C.
Angel
,
Phys. Rev. Lett.
56
,
2020
(
1986
).
17.
J. W.
Gallagher
,
C. E.
Brion
,
J. A. R.
Samson
, and
P. W.
Langhoff
,
J. Phys. Chem. Ref. Data
17
,
9
(
1988
).
18.
J. P.
Cole
and
G. G.
Galint-Kurti
,
J. Chem. Phys.
119
,
6003
(
2003
).
19.
B. Ruscic (private communication).
20.
P. Casavecchia (unpublished).
21.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.11.3, Gaussian, Inc., Pittsburgh, PA, 2002.
22.
S. W. Benson, Thermochemical Kinetics (Wiley, New York, 1968), pp. 140, 205–207.
23.
W. L. Hase and D. L. Bunker, QCPE 234 (1974).
This content is only available via PDF.
You do not currently have access to this content.