A wave packet simulation of the ultraviolet photolysis dynamics of Ar-HI(v=0) is reported. Cluster photodissociation is started from two different initial states, namely, the ground van der Waals (vdW) and the first excited vdW bending state, associated with the Ar-I-H and Ar-H-I isomeric forms of the system, respectively. Formation of Ar-I radical products is investigated over the energy range of the cluster absorption spectrum. It is found that the yield of bound Ar-I radical complexes is typically 90%–100% and 70%–80% for the initial states associated with the Ar-I-H and Ar-H-I isomers, respectively. This result is in agreement with the experimentally observed time-of-flight spectrum of the hydrogen fragment produced after Ar-HI photodissociation. The high Ar-I yield is explained mainly by the small amount of energy available for the radical that is converted into internal energy in the photofragmentation process, which enhances the Ar-I survival probability. Quantum interference effects manifest themselves in structures in the angular distribution of the hydrogen fragment, and in pronounced rainbow patterns in the rotational distributions of the Ar-I radical.

1.
C.
Jaques
,
L.
Valachovic
,
S.
Ionov
,
Y.
Wen
,
E.
Böhmer
,
J.
Segall
, and
C.
Wittig
,
J. Chem. Soc., Faraday Trans.
89
,
1419
(
1993
).
2.
J.
Zhang
,
M.
Dulligan
,
J.
Segall
,
Y.
Wen
, and
C.
Wittig
,
J. Phys. Chem.
99
,
13680
(
1995
).
3.
K.
Liu
,
A.
Kolessov
,
J. W.
Partin
,
I.
Bezel
, and
C.
Wittig
,
Chem. Phys. Lett.
299
,
374
(
1999
).
4.
S. R.
Mackenzie
,
O.
Votava
,
J. R.
Fair
, and
D. J.
Nesbitt
,
J. Chem. Phys.
105
,
11360
(
1996
);
S. R.
Mackenzie
,
O.
Votava
,
J. R.
Fair
, and
D. J.
Nesbitt
,
J. Chem. Phys.
110
,
5149
(
1999
).
5.
T.
Schröder
,
R.
Schinke
,
S.
Liu
,
Z.
Bačić
, and
J. W.
Moskowitz
,
J. Chem. Phys.
103
,
9228
(
1995
).
6.
B.
Schmidt
,
Chem. Phys. Lett.
301
,
207
(
1999
).
7.
A.
Garcı́a-Vela
,
R. B.
Gerber
, and
J. J.
Valentini
,
Chem. Phys. Lett.
186
,
223
(
1991
).
8.
A.
Garcı́a-Vela
,
R. B.
Gerber
, and
U.
Buck
,
J. Phys. Chem.
98
,
3518
(
1994
).
9.
T.
Schröder
,
R.
Schinke
, and
Z.
Bačić
,
Chem. Phys. Lett.
235
,
316
(
1995
).
10.
E.
Narevicius
and
N.
Moiseyev
,
Chem. Phys. Lett.
287
,
250
(
1998
).
11.
M. Y.
Niv
,
A. I.
Krylov
,
R. B.
Gerber
, and
U.
Buck
,
J. Chem. Phys.
110
,
11047
(
1999
).
12.
P.
Žďánská
,
B.
Schmidt
, and
P.
Jungwirth
,
J. Chem. Phys.
110
,
6246
(
1999
);
P.
Žďánská
,
P.
Slavı́ček
, and
P.
Jungwirth
,
J. Chem. Phys.
112
,
10761
(
2000
).
13.
R.
Baumfalk
,
N. H.
Nahler
,
U.
Buck
,
M. Y.
Niv
, and
R. B.
Gerber
,
J. Chem. Phys.
113
,
329
(
2000
).
14.
P.
Slavı́ček
,
P.
Žďánská
,
P.
Jungwirth
,
R.
Baumfalk
, and
U.
Buck
,
J. Phys. Chem. A
104
,
7793
(
2000
).
15.
R.
Alimi
and
R. B.
Gerber
,
Phys. Rev. Lett.
64
,
1453
(
1990
).
16.
K. M.
Christoffel
and
J. M.
Bowman
,
J. Chem. Phys.
104
,
8348
(
1996
).
17.
J. R.
Fair
and
D. J.
Nesbitt
,
J. Chem. Phys.
113
,
10962
(
2000
).
18.
A. B.
McCoy
,
Y.
Hurwitz
, and
R. B.
Gerber
,
J. Phys. Chem.
97
,
12516
(
1993
).
19.
R.
Prosmiti
and
A.
Garcı́a-Vela
,
J. Phys. Chem. A
107
,
5397
(
2003
).
20.
(a)
J. C.
Juanes-Marcos
and
A.
Garcı́a-Vela
,
J. Chem. Phys.
112
,
4983
(
2000
);
(b)
J. C.
Juanes-Marcos
and
A.
Garcı́a-Vela
,
J. Chem. Phys.
115
,
5692
(
2001
)(E);
(c)
J. C.
Juanes-Marcos
and
A.
Garcı́a-Vela
,
J. Phys. Chem. A
106
,
236
(
2002
).
21.
B.
Lepetit
and
D.
Lemoine
,
J. Chem. Phys.
117
,
8676
(
2002
).
22.
J.
Trin
,
M.
Monnerville
,
B.
Pouilly
, and
H.-D.
Meyer
,
J. Chem. Phys.
118
,
600
(
2003
).
23.
R.
Prosmiti
and
A.
Garcı́a-Vela
,
J. Chem. Phys.
118
,
8268
(
2003
).
24.
S.
López-López
and
A.
Garcı́a-Vela
,
J. Chem. Phys.
120
,
660
(
2004
).
25.
A.
McIntosh
,
Z.
Wang
,
J.
Castillo-Chara
,
R. R.
Lucchese
,
J. W.
Bevan
,
R. D.
Suenram
, and
A. C.
Legon
,
J. Chem. Phys.
111
,
5764
(
1999
).
26.
R.
Prosmiti
,
S.
López-López
, and
A.
Garcı́a-Vela
,
J. Chem. Phys.
120
,
6471
(
2004
).
27.
A. B.
Alekseyev
,
H.-P.
Liebermann
,
D. B.
Kokh
, and
R. J.
Buenker
,
J. Chem. Phys.
113
,
6174
(
2000
).
28.
A. B. Alekseyev (private communication).
29.
K. T.
Tang
and
J. P.
Toennies
,
Chem. Phys.
156
,
413
(
1991
).
30.
Y. X.
Zhao
,
I.
Yourshaw
,
G.
Reiser
,
C. C.
Arnold
, and
D. M.
Neumark
,
J. Chem. Phys.
101
,
6538
(
1994
).
31.
J. A.
Beswick
and
J.
Jortner
,
Adv. Chem. Phys.
47
,
363
(
1981
).
32.
R.
Prosmiti
and
A.
Garcı́a-Vela
,
Chem. Phys. Lett.
366
,
238
(
2002
).
33.
H.
Tal-Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
34.
Note that the angle of the distributions of Fig. 6 is θ instead of θ. However, for large separations between H and the Ar-I center-of-mass (the asymptotic limit where the angular distributions are calculated) the two angles become very similar.
35.
J.
Segall
,
Y.
Wen
,
R.
Singer
,
C.
Wittig
,
A.
Garcı́a-Vela
, and
R. B.
Gerber
,
Chem. Phys. Lett.
207
,
504
(
1993
).
36.
D. F.
Plusquellic
,
O.
Votava
, and
D. J.
Nesbitt
,
J. Chem. Phys.
101
,
6356
(
1994
).
37.
R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993).
This content is only available via PDF.
You do not currently have access to this content.