The weakly bound HOONO product of the OH+NO2+M reaction is studied using the vibrational predissociation that follows excitation of the first OH overtone (2ν1). We observe formation of both cis-cis and trans-perp conformers of HOONO. The trans-perp HOONO 1 band is observed under thermal (223–238 K) conditions at 6971 cm−1. We assign the previously published (warmer temperature) HOONO spectrum to the 1 band at 6365 cm−1 and 1-containing combination bands of the cis-cis conformer of HOONO. The band shape of the trans-perp HOONO spectrum is in excellent agreement with the predicted rotational contour based on previous experimental and theoretical results, but the apparent origin of the cis-cis HOONO spectrum at 6365 cm−1 is featureless and significantly broader, suggesting more rapid intramolecular vibrational redistribution or predissociation in the latter isomer. The thermally less stable trans-perp HOONO isomerizes rapidly to cis-cis HOONO with an experimentally determined lifetime of 39 ms at 233 K at 13 hPa (in a buffer gas of predominantly Ar). The temperature dependence of the trans-perp HOONO lifetime in the range 223–238 K yields an isomerization barrier of 33±12 kJ/mol. New ab initio calculations of the structure and vibrational mode frequencies of the transition state perp-perp HOONO are performed using the coupled cluster singles and doubles with perturbative triples [CCSD(T)] model, using a correlation consistent polarized triple ζ basis set (cc-pVTZ). The energetics of cis-cis, trans-perp, and perp-perp HOONO are also calculated at this level [CCSD(T)/cc-pVTZ] and with a quadruple ζ basis set using the structure determined at the triple ζ basis set [CCSD(T)/cc-pVQZ//CCSD(T)/cc-pVTZ]. These calculations predict that the anti form of perp-perp HOONO has an energy of ΔE0=42.4 kJ/mol above trans-perp HOONO, corresponding to an activation enthalpy of ΔH298‡0=41.1 kJ/mol. These results are in good agreement with statistical simulations based on a model developed by Golden, Barker, and Lohr. The simulated isomerization rates match the observed decay rates when modeled with a trans-perp to cis-cis HOONO isomerization barrier of 40.8 kJ/mol and a strong collision model. The quantum yield of cis-cis HOONO dissociation to OH and NO2 is also calculated as a function of photon excitation energy in the range 3500–7500 cm−1, assuming D0=83 kJ/mol. The quantum yield is predicted to vary from 0.15 to 1 over the observed spectrum at 298 K, leading to band intensities in the action spectrum that are highly temperature dependent; however, the observed relative band strengths in the cis-cis HOONO spectrum do not change substantially with temperature over the range 193–273 K. Semiempirical calculations of the oscillator strengths for 1(cis-cisHOONO) and 1(trans-perpHOONO) are performed using (1) a one-dimensional anharmonic model and (2) a Morse oscillator model for the OH stretch, and ab initio dipole moment functions calculated using Becke, Lee, Yang, and Parr density functional theory (B3LYP), Møller-Plesset pertubation theory truncated at the second and third order (MP2 and MP3), and quadratic configuration interaction theory using single and double excitations (QCISD). The QCISD level calculated ratio of 1 oscillator strengths of trans-perp to cis-cis HOONO is 3.7:1. The observed intensities indicate that the concentration of trans-perp HOONO early in the OH+NO2 reaction is significantly greater than predicted by a Boltzmann distribution, consistent with statistical predictions of high initial yields of trans-perp HOONO from the OH+NO2+M reaction. In the atmosphere, trans-perp HOONO will isomerize nearly instantaneously to cis-cis HOONO. Loss of HOONO via photodissociation in the near-IR limits the lifetime of cis-cis HOONO during daylight to less than 45 h, other loss mechanisms will reduce the lifetime further.

1.
D. M.
Golden
and
G. P.
Smith
,
J. Phys. Chem. A
104
,
3991
(
2000
).
2.
D. M.
Golden
,
J. R.
Barker
, and
L. L.
Lohr
,
J. Phys. Chem. A
107
,
11057
(
2003
).
3.
H.
Hippler
,
S.
Nasterlack
, and
F.
Striebel
,
Phys. Chem. Chem. Phys.
4
,
2959
(
2002
).
4.
D. M.
Matheu
and
W. H.
Green
,
Int. J. Chem. Kinet.
32
,
245
(
2000
).
5.
J.
Troe
,
Int. J. Chem. Kinet.
33
,
878
(
2001
).
6.
D.
Fulle
,
H. F.
Hamann
,
H.
Hippler
, and
J.
Troe
,
J. Chem. Phys.
108
,
5391
(
1998
).
7.
N. M.
Donahue
,
R.
Mohrschladt
,
T. J.
Dransfield
,
J. G.
Anderson
, and
M. K.
Dubey
,
J. Phys. Chem. A
105
,
1515
(
2001
).
8.
J. S.
Robertshaw
and
I. W. M.
Smith
,
J. Phys. Chem.
86
,
785
(
1982
).
9.
B. D.
Bean
,
A. K.
Mollner
,
S. A.
Nizkorodov
,
G.
Nair
,
M.
Okumura
,
S. P.
Sander
,
K. A.
Peterson
, and
J. S.
Francisco
,
J. Phys. Chem. A
107
,
6974
(
2003
).
10.
D. A.
Dixon
,
D.
Feller
,
C. G.
Zhan
, and
J. S.
Francisco
,
J. Phys. Chem. A
106
,
3191
(
2002
).
11.
S. A.
Nizkorodov
and
P. O.
Wennberg
,
J. Phys. Chem. A
106
,
855
(
2002
).
12.
M. P.
McGrath
and
F. S.
Rowland
,
J. Phys. Chem.
98
,
1061
(
1994
).
13.
H. W.
Jin
,
Z. Z.
Wang
,
Q. S.
Li
, and
X. R.
Huang
,
Theochem-J. Mol. Struct.
624
,
115
(
2003
).
14.
H. H.
Tsai
,
T. P.
Hamilton
,
J. H. M.
Tsai
,
M.
vanderWoerd
,
J. G.
Harrison
,
M. J.
Jablonsky
,
J. S.
Beckman
, and
W. H.
Koppenol
,
J. Phys. Chem.
100
,
15087
(
1996
).
15.
Y. M.
Li
and
J. S.
Francisco
,
J. Chem. Phys.
113
,
7976
(
2000
).
16.
H. Hippler, S. Krasteva, S. Nasterlack, and F. Striebel (private communication).
17.
I. B.
Pollack
,
I. M.
Konen
,
E. X. J.
Li
, and
M. I.
Lester
,
J. Chem. Phys.
119
,
9981
(
2003
).
18.
R. S.
Zhu
and
M. C.
Lin
,
J. Chem. Phys.
119
,
10667
(
2003
).
19.
B. M.
Cheng
,
J. W.
Lee
, and
Y. P.
Lee
,
J. Phys. Chem.
95
,
2814
(
1991
).
20.
P. O.
Wennberg
,
R. C.
Cohen
,
N. L.
Hazen
et al.,
Rev. Sci. Instrum.
65
,
1858
(
1994
).
21.
S.
Wu
,
G. A.
Blake
,
Z. Y.
Sun
, and
J. W.
Ling
,
Appl. Opt.
36
,
5898
(
1997
).
22.
L. S.
Rothman
,
C. P.
Rinsland
,
A.
Goldman
et al.,
J. Quant. Spectrosc. Radiat. Transf.
60
,
665
(
1998
).
23.
R. H.
Judge
and
D. J.
Clouthier
,
Comput. Phys. Commun.
135
,
293
(
2001
).
24.
R. A.
Kenley
,
P. L.
Trevor
, and
B. Y.
Lan
,
J. Am. Chem. Soc.
103
,
2203
(
1981
).
25.
D. A. V.
Kliner
and
R. L.
Farrow
,
J. Chem. Phys.
110
,
412
(
1999
).
26.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. GAUSSIAN 98, Revision A.9, 1998.
27.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
28.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
29.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
30.
J. R.
Barker
,
Int. J. Chem. Kinet.
33
,
232
(
2001
).
31.
N. M.
Donahue
,
M. K.
Dubey
,
R.
Mohrschladt
,
K. L.
Demerjian
, and
J. G.
Anderson
,
J. Geophys. Res., [Atmos.]
102
,
6159
(
1997
).
32.
H. G.
Kjaergaard
,
K. J.
Bezar
, and
K. A.
Brooking
,
Mol. Phys.
96
,
1125
(
1999
).
33.
H. G.
Kjaergaard
,
C. D.
Daub
, and
B. R.
Henry
,
Mol. Phys.
90
,
201
(
1997
).
34.
H. G.
Kjaergaard
,
B. R.
Henry
, and
A. W.
Tarr
,
J. Chem. Phys.
94
,
5844
(
1991
).
35.
H. G.
Kjaergaard
,
H. T.
Yu
,
B. J.
Schattka
,
B. R.
Henry
, and
A. W.
Tarr
,
J. Chem. Phys.
93
,
6239
(
1990
).
36.
D. M.
Turnbull
,
H. G.
Kjaergaard
, and
B. R.
Henry
,
Chem. Phys.
195
,
129
(
1995
).
37.
H. G.
Kjaergaard
,
J. Phys. Chem. A
106
,
2979
(
2002
).
38.
J. W. Ochterski, Gaussian White Paper 1999.
39.
E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill, New York, 1955).
40.
C. H.
Choi
and
M.
Kertesz
,
J. Phys. Chem.
100
,
16530
(
1996
).
41.
H. G.
Kjaergaard
,
G. R.
Low
,
T. W.
Robinson
, and
D. L.
Howard
,
J. Phys. Chem. A
106
,
8955
(
2002
).
42.
J. A. C.
Gallas
,
Phys. Rev. A
21
,
1829
(
1980
).
43.
K. R.
Lange
,
N. P.
Wells
,
K. S.
Plegge
, and
J. A.
Phillips
,
J. Phys. Chem. A
105
,
3481
(
2001
).
44.
C.
Chackerian
,
S. W.
Sharpe
, and
T. A.
Blake
,
J. Quant. Spectrosc. Radiat. Transf.
82
,
429
(
2003
).
45.
D. J.
Donaldson
,
J. J.
Orlando
,
S.
Amann
,
G. S.
Tyndall
,
R. J.
Proos
,
B. R.
Henry
, and
V.
Vaida
,
J. Phys. Chem. A
102
,
5171
(
1998
).
46.
Z. M.
Rong
,
H. G.
Kjaergaard
, and
M. L.
Sage
,
Mol. Phys.
101
,
2285
(
2003
).
47.
Z.
Rong
,
D. L.
Howard
, and
H. G.
Kjaergaard
,
J. Phys. Chem. A
107
,
4607
(
2003
).
48.
R. J.
Salawitch
,
P. O.
Wennberg
,
G. C.
Toon
,
B.
Sen
, and
J. F.
Blavier
,
Geophys. Res. Lett.
29
,
1762
(
2002
).
49.
C. W. Allen, Allen’s Astrophysical Quantities (Springer, New York, 2000).
50.
T. F.
Hanisco
,
E. J.
Lanzendorf
,
P. O.
Wennberg
et al.,
J. Phys. Chem. A
105
,
1543
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.