By using small-angle neutron scattering (SANS) and neutron spin echo (NSE), we have quantitatively investigated the static inhomogeneity in poly (N-isopropyl acrylamide) gel (PNIPA) in microscopic length scales of 0.015<q<0.16 A−1, where q is a wave number of scattered neutrons. NSE revealed that at lower q(≅0.015 A−1), the concentration fluctuations in the PNIPA gel decays more slowly as compared to the PNIPA solution without crosslinks. According to our scenario that the slower decay found for the PNIPA gel is due to the static inhomogeneity coexisting in the swollen gel, small-angle scattering S(q) obtained by SANS has been quantitatively decomposed into thermal and static scattering components, respectively, Sth(q) and Sst(q). It was further revealed that (i) the q-region where Sst(q) becomes dominant is closely related to that for the abnormal butterfly scattering under stretching, and (ii) as the temperature increases toward the temperature for volume phase transition, Sst(q) of a squared Lorentzian shape increases more drastically than Sth(q) of a Lorentzian shape. These findings were quantitatively understood in the theoretical framework by Panyukov and Rabin [Macromolecules 29, 7960 (1996)] or by Onuki [J. Phys. II. France 2, 45 (1992)], taking into account stress-fluctuation coupling under coexistence of the inherent structural heterogeneity in the real gel. We further found that the static inhomogeneity showing Sst(q) seems to relate to the necklacelike microstructure, appearing after a shallow quench into the collapsed phase.

1.
M.
Doi
and
A.
Onuki
,
J. Phys. II
2
,
1631
(
1992
).
2.
J. Bastide and S. J. Candau, in Physical Properties of Polymeric Gels, edited by J. P. Cohen Addad (Wiley, New York, 1996), pp. 143–308 and references cited therein.
3.
H.
Tanaka
,
J. Phys.: Condens. Matter
12
,
R207
(
2000
).
4.
P.-G. de Gennes, Scaling Concenpts in Polymer Physics (Cornell, Ithaca, NY, 1979).
5.
N.
Toyoda
,
M.
Takenaka
,
S.
Saito
, and
T.
Hashimoto
,
Polymer
42
,
9193
(
2001
).
6.
S.
Koizumi
,
J. Appl. Crystallogr.
36
,
381
(
2003
);
S. Koizumi, J. Polym. Sci. Part B. Vol. 42, 3148–3164 (2004).
7.
A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2002).
8.
T.
Tanaka
,
L. O.
Hocker
, and
G. B.
Benedek
,
J. Chem. Phys.
59
,
5151
(
1973
);
T.
Tanaka
and
D. J.
Fillmore
,
J. Chem. Phys.
70
,
1214
(
1979
).
9.
A.
Onuki
,
Phys. Rev. A
38
,
2192
(
1988
).
10.
A.
Onuki
and
S.
Puri
,
Phys. Rev. E
59
,
R1331
(
1999
).
11.
K.
Sekimoto
,
N.
Suematsu
, and
K.
Kawasaki
,
Phys. Rev. A
39
,
4912
(
1989
).
12.
S. Koizumi et al. (in preparation).
13.
J. G. H.
Joosten
,
J. L.
McCarthy
, and
P. N.
Pusey
,
Macromolecules
24
,
6690
(
1991
);
J. G. H.
Joosten
,
A.
Moussaid
, and
S. J.
Candau
,
Macromolecules
27
,
2102
(
1994
).
14.
M.
Shibayama
,
T.
Norisuye
, and
S.
Nomura
,
Macromolecules
29
,
8746
(
1996
).
15.
C.
Rouf
,
J.
Bastide
,
J. M.
Pujol
,
F.
Schosseler
, and
J. P.
Munch
,
Phys. Rev. Lett.
73
,
830
(
1994
).
16.
“Neutron Spin Echo” Lecture Notes in Physics 128, edited by F. Mezei (Springer-Verlag, Berlin, 1980).
17.
S.
Panyukov
and
Y.
Rabin
,
Macromolecules
29
,
7960
(
1996
).
18.
A.
Onuki
,
J. Phys. II
2
,
45
(
1992
).
19.
T.
Tanaka
,
Sci. Am.
244
,
110
(
1981
).
20.
D.
Schwahn
,
G.
Meier
, and
T.
Springer
,
J. Appl. Crystallogr.
24
,
568
(
1991
).
21.
M.
Monkenbusch
,
R.
Schätzler
, and
D.
Richter
,
Nucl. Instrum. Methods Phys. Res. A
399
,
310
(
1997
).
22.
“Guide to Neutron Research Facilities at the ILL” (The Yellow Book) (Insitute Laue–Langevin, Grenoble, 1997).
23.
S.
Koizumi
,
M.
Annaka
,
S.
Borberly
, and
D.
Schwahn
,
Physica B
276–278
,
367
(
2000
).
24.
S.
Koizumi
,
M.
Monkenbusch
,
D.
Richter
,
D.
Schwahn
, and
M.
Annaka
,
J. Phys. Soc. Jpn. Suppl. A
70
,
320
(
2001
);
S.
Koizumi
,
M.
Monkenbusch
,
D.
Richter
,
D.
Schwahn
, and
M.
Annaka
,
Appl. Phys. A: Mater. Sci. Process.
74
,
S402
(
2002
);
S.
Koizumi
,
D.
Monkenbusch
,
D.
Richter
,
D.
Schwahn
, and
M.
Annaka
,
J. Neutron Res.
10
(3–4),
155
(
2002
).
25.
B. Ewen and D. Richter, Advances in Polymer Science, Vol. 134 (Springer-Verlag, Berlin Heidelberg, 1997).
26.
E. S.
Matsuo
,
M.
Orkisz
,
S. T.
Sun
,
Y.
Li
, and
T.
Tanaka
,
Macromolecules
27
,
6791
(
1994
).
27.
M.
Shibayama
,
K.
Kawakubo
, and
T.
Norisuye
,
Macromolecules
31
,
1608
(
1998
).
28.
A. Onuki, in Space Time Organization in Mocromolecular Fluids, edited by F. Tanaka, T. Ohta, and M. Doi (Springer-Verlag, Berlin, 1989), p. 94.
29.
J.
Bastide
,
L.
Leibler
, and
J.
Prost
,
Macromolecules
23
,
1821
(
1990
).
30.
E.
Mendes
, Jr.
,
P.
Lindner
,
M.
Buzier
,
F.
Boué
, and
J.
Bastide
,
Phys. Rev. Lett.
66
,
1595
(
1991
).
31.
A.
Ramzi
,
F.
Zielinski
,
J.
Bastide
, and
F.
Boué
,
Macromolecules
28
,
3570
(
1995
).
32.
E.
Mendes
,
R.
Oeser
,
C.
Hayes
,
F.
Boué
, and
J.
Bastide
,
Macromolecules
29
,
5574
(
1996
).
33.
J.
Bastide
and
L.
Leibler
,
Macromolecules
21
,
2647
(
1988
).
34.
E.
Geissler
and
A. M.
Hecht
,
Macromolecules
13
,
1276
(
1980
);
E.
Geissler
and
A. M.
Hecht
,
Macromolecules
14
,
185
(
1981
).
35.
S.
Hirotsu
,
J. Chem. Phys.
94
,
3949
(
1991
).
36.
H.
Benoit
and
C.
Picot
,
Pure Appl. Chem.
12
,
545
(
1966
).
37.
E.
Geissler
,
A. M.
Hecht
,
F.
Horkay
, and
M.
Zrinyi
,
Macromolecules
21
,
2594
(
1988
).
38.
S.
Mallam
,
A. M.
Hecht
,
E.
Geissler
, and
E.
Pruvost
,
J. Chem. Phys.
91
,
6447
(
1989
).
39.
F.
Horkay
,
A. M.
Hecht
,
S.
Mallam
,
E.
Geissler
, and
A. R.
Rennie
,
Macromolecules
24
,
2896
(
1991
);
F.
Horkay
,
W.
Burchard
,
A. M.
Hecht
, and
E.
Geissler
,
Macromolecules
26
,
4203
(
1993
);
E.
Geissler
,
F.
Horkay
, and
A. M.
Hecht
,
J. Chem. Phys.
100
,
8418
(
1994
).
40.
A. M.
Hecht
,
F.
Horkay
,
P.
Schleger
, and
E.
Geissler
,
Macromolecules
35
,
8552
(
2002
).
41.
S.
Hirotsu
,
J. Phys. Soc. Jpn.
56
,
233
(
1987
).
42.
B.
Erman
and
P. J.
Flory
,
Macromolecules
19
,
2342
(
1986
).
43.
Y. A.
Kuznetsov
,
E. G.
Timoshenko
, and
K. A.
Dowson
,
J. Chem. Phys.
103
,
4807
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.