The UV absorption of aqueous Cu+ and Ag+ has been studied using Time Dependent Density Functional Theory (TDDFT) response techniques. The TDDFT electronic spectrum was computed from finite temperature dynamical trajectories in solution generated using the Density Functional Theory (DFT) based Ab Initio Molecular Dynamics (AIMD) method. The absorption of the two ions is shown to arise from similar excitation mechanisms, namely transitions from d orbitals localized on the metal center to a rather delocalized state originating from hybridization of the metal s orbital to the conduction band edge of the solvent. The ions differ in the way the spectral profile builds up as a consequence of solvent thermal motion. The Cu+ absorption is widely modulated, both in transition energies and intensities by fluctuations in the coordination environment which is characterized by the formation of strong coordination bonds to two water molecules in an approximately linear geometry. Though, on average, absorption intensities are typical of symmetry forbidden transitions of metal ions in the solid state, occasionally very short (<100 fs) bursts in intensity are observed, associated with anomalous Cu–H interactions. Absorption by the Ag+ complex is in comparison relatively stable in time, and can be interpreted in terms of the energy splitting of the metal 4d manifold in an average crystal field corresponding to a fourfold coordination in a distorted tetrahedral arrangement. Whereas the spectral profile of the Ag+ aqua ion is in good agreement with experiment, the overall position of the band is underestimated by 2 eV in the BLYP approximation to DFT. The discrepancy with experiment is reduced to 1.3 eV when a hybrid functional (PBE0) is used. The remaining inaccuracy of TDDFT in this situation is related to the delocalized character of the target state in d→s transitions.

1.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
2.
M.
Petersilka
,
U. J.
Gossmann
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
76
,
1212
(
1996
).
3.
M. E. Casida, in Recent Developments and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry, edited by J. M. Seminario (Elsevier, Amsterdam, 1996), Vol. 4.
4.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
5.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
6.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
7.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
8.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
9.
D. J.
Tozer
,
J. Chem. Phys.
119
,
12697
(
2003
).
10.
O.
Gritsenko
and
E. J.
Baerends
,
J. Chem. Phys.
121
,
655
(
2004
).
11.
L.
Bernasconi
,
M.
Sprik
, and
J.
Hutter
,
J. Chem. Phys.
119
,
12417
(
2003
).
12.
U. F.
Röhrig
,
I.
Frank
,
J.
Hutter
,
A.
Laio
,
J.
VandeVondele
, and
U.
Röthlisberger
,
Chem. Phys. Chem.
4
,
1177
(
2003
).
13.
A.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
14.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
15.
L.
Bernasconi
,
M.
Sprik
, and
J.
Hutter
,
Chem. Phys. Lett.
394
,
141
(
2004
).
16.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
17.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
18.
J.
Blumberger
,
L.
Bernasconi
,
I.
Tavernelli
,
R.
Vuilleumier
, and
M.
Sprik
,
J. Am. Chem. Soc.
126
,
3928
(
2004
).
19.
R.
Spezia
,
N. C.
Boutin
, and
R.
Vuilleumier
,
Phys. Rev. Lett.
91
,
208304
(
2003
).
20.
J.
Texter
,
J. J.
Hastreiter
, and
J. L.
Hall
,
J. Phys. Chem.
87
,
4690
(
1983
).
21.
N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984).
22.
E.
Durand
,
G.
Ouvrard
,
M.
Evain
, and
R.
Brec
,
Inorg. Chem.
29
,
4916
(
1990
).
23.
R. A. Huggins, in Diffusion in Solids, edited by A. S. Nowick and J. J. Burton (Academic Press New York, 1975).
24.
D. A.
Keen
,
S.
Hull
,
A. C.
Barnes
,
P.
Berastegui
,
W. A.
Crichton
,
P. A.
Madden
,
M. G.
Tucker
, and
M.
Wilson
,
Phys. Rev. B
68
,
014117
(
2003
).
25.
L. G.
Berry
,
Am. Mineral.
39
,
504
(
1954
).
26.
M. J.
Buerger
and
B. J.
Wunsch
,
Science
141
,
276
(
1963
).
27.
M.
O’Keeffe
and
B. G.
Hyde
,
Solid State Chem.
13
,
172
(
1975
).
28.
A.
Janosi
,
Acta Crystallogr.
17
,
311
(
1964
).
29.
J. C.
Dyason
,
P. C.
Healy
,
L. M.
Engelhardt
,
C.
Pakawatchai
,
V. A.
Patrick
,
C. L.
Raston
, and
A. H.
White
,
J. Chem. Soc. Dalton Trans.
,
(
1985
)
831
.
30.
I. G.
Dance
,
M. L.
Scudder
, and
L. J.
Fitzpatrick
,
Inorg. Chem.
24
,
2547
(
1985
).
31.
M.
Håkansson
and
S.
Jagner
,
J. Organomet. Chem.
397
,
383
(
1990
).
32.
H.
Müller-Buschbaum
,
Angew. Chem., Int. Ed. Engl.
30
,
723
(
1991
).
33.
P.
von Engel
and
W.
Nowacki
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
B24
,
77
(
1968
).
34.
J. K.
Burdett
and
O.
Eisenstein
,
Inorg. Chem.
31
,
1758
(
1992
).
35.
J. K. Burdett, Molecular Shapes (Wiley, New York, 1980).
36.
S.
Lee
,
P.
Ouvrard
, and
R.
Brec
,
Inorg. Chem.
27
,
1291
(
1988
).
37.
M.
Gerloch
,
Inorg. Chem.
20
,
638
(
1981
).
38.
M.
Sandström
,
G. W.
Neilson
,
G.
Johansson
, and
T.
Yamaguchi
,
J. Phys. C
18
,
1115
(
1985
).
39.
N. T.
Skipper
and
G. W.
Neilson
,
J. Phys.: Condens. Matter
1
,
4141
(
1989
).
40.
A. M.
El-Nahas
and
K.
Hirao
,
J. Phys. Chem. A
104
,
138
(
2000
).
41.
D.
Feller
,
E. D.
Glendening
, and
W. A.
de Jong
,
J. Chem. Phys.
110
,
1475
(
1999
).
42.
C. W.
Bauschlicher
, Jr.
,
S. R.
Langhoff
, and
H.
Partridge
,
J. Chem. Phys.
94
,
2068
(
1991
).
43.
T. F.
Magnera
,
D. E.
David
,
D.
Stulik
,
R. G.
Orth
,
H. T.
Jonkmann
, and
J.
Michl
,
J. Am. Chem. Soc.
111
,
5036
(
1989
).
44.
R.
Van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
45.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
46.
P. R. T.
Schipper
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
112
,
1344
(
2000
).
47.
M.
Grüning
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
9591
(
2002
).
48.
D. M.
Bylander
and
L.
Kleinman
,
Phys. Rev. B
52
,
14566
(
1995
).
49.
M.
Städele
,
J. A.
Majewski
,
P.
Vogel
, and
A.
Görling
,
Phys. Rev. Lett.
79
,
1089
(
1997
).
50.
J.
Hutter
,
J. Chem. Phys.
118
,
3928
(
2003
).
51.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
47
,
1651
(
1993
).
52.
R.
Resta
,
Rev. Mod. Phys.
66
,
899
(
1994
).
53.
I.
Souza
,
T.
Wilkens
, and
R. M.
Martin
,
Phys. Rev. B
62
,
1666
(
2000
).
54.
I.
Souza
,
J.
Íñiguez
, and
D.
Vanderbilt
,
Phys. Rev. B
69
,
085106
(
2004
).
55.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
56.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
43
(
1991
).
57.
R.
Vuilleumier
and
M.
Sprik
,
J. Chem. Phys.
115
,
3454
(
2001
).
58.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
59.
D. K.
Remler
and
P. A.
Madden
,
Mol. Phys.
70
,
921
(
1990
).
60.
D. Marx and J. Hutter, Ab-initio Molecular Dynamics: Theory and Implementation, in Modern Methods and Algorithms, edited by J. Grotendorst (2000), Vol. 1, p. 301.
61.
We used CPMD Version 3.6, J. Hutter et al., Copyright MPI für Festkörperforschung Stuttgart and IBM Zurich Research Laboratory; see also www.cpmd.org.
62.
A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw–Hill, New York, 1971).
63.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
302
,
375
(
1999
).
64.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
65.
R.
Bauernschmitt
,
M.
Häser
,
O.
Troitler
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
66.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
8218
(
1998
).
67.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
68.
P.
Hunt
,
M.
Sprik
, and
R.
Vuilleumier
,
Chem. Phys. Lett.
376
,
68
(
2003
).
69.
M.
Boero
,
M.
Parrinello
,
K.
Terakura
,
T.
Ikeshoji
, and
C. C.
Liew
,
Phys. Rev. Lett.
90
,
226403
(
2003
).
70.
K.
Laasonen
,
M.
Sprik
,
M.
Parrinello
, and
R.
Car
,
J. Chem. Phys.
99
,
9080
(
1993
).
71.
I.
Watanabe
,
J. B.
Flanagan
, and
P.
Delahay
,
J. Chem. Phys.
73
,
2057
(
1980
).
72.
T.
Watanabe
and
H.
Gerischer
,
J. Electroanal. Chem. Interfacial Electrochem.
122
,
73
(
1981
).
73.
P.
Delahay
and
K.
von Burg
,
Chem. Phys. Lett.
83
,
250
(
1981
).
74.
P.
Delahay
,
Acc. Chem. Res.
15
,
40
(
1982
).
75.
W.
Grevendonk
,
J.
Dauwen
,
P.
Van den Keybus
, and
B.
Vanhuyse
,
J. Chem. Phys.
81
,
3746
(
1984
).
76.
A.
Bernas
,
C.
Ferradini
, and
J. P.
Jay-Gerrin
,
J. Photochem. Photobiol., A
117
,
117
(
1998
).
77.
B. G.
Ershov
,
E.
Janata
,
M.
Michaelis
, and
A.
Henglein
,
J. Chem. Phys.
95
,
8996
(
1991
).
78.
K.
Shaw
and
J. H.
Espenson
,
Inorg. Chem.
7
,
1619
(
1968
).
79.
We remark that in a distorted (flattened) tetrahedral coordination environment only orbitals belonging to the t2 manifold are optically active. This would give rise to only three, in place of five, d→s transitions with nonzero intensity. Random fluctuations in the coordination shell can however result in electronic coupling between d states, in addition to merely changing their energy. This effect was studied by diagonalizing a 5×5 Hamiltonian containing orbital energies as from Fig. 6 as diagonal elements, and including random fluctuations in the form of Gaussian distributions of width 0.06 eV. Only three states, aligned in different directions (x,y,z), were initially assigned nonzero oscillator strength. After diagonalization, all states were found to be active, and the resulting spectrum to be well described by a sum of Gaussian distributions. In the model described in the main test we therefore followed the simplifying assumption that each of the five d→s modes would contribute by the same amount to the overall ion absorption.
80.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
81.
P. L.
Silvestrelli
,
N.
Marzari
,
D.
Vanderbilt
, and
M.
Parrinello
,
Solid State Commun.
107
,
7
(
1998
).
82.
A. J. Stone, The Theory of Intermolecular Forces (Clarendon, Oxford, 1996).
83.
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
).
84.
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, Philadelphia, 1976).
85.
P. L.
Silvestrelli
,
Phys. Rev. B
59
,
9703
(
1999
).
86.
A.
Aguado
,
L.
Bernasconi
,
S.
Jahn
, and
P. A.
Madden
,
Faraday Discuss.
124
,
171
(
2003
).
87.
C.
Sgiarovello
,
M.
Peressi
, and
R.
Resta
,
Phys. Rev. B
64
,
115202
(
2001
).
88.
L.
Bernasconi
,
P. A.
Madden
, and
M.
Wilson
,
Phys. Chem. Commun.
5
,
1
(
2002
).
89.
L.
Bernasconi
,
M.
Wilson
, and
P. A.
Madden
,
Comput. Mater. Sci.
22
,
94
(
2001
).
90.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
91.
J. J.
Mortensen
and
M.
Parrinello
,
J. Phys.: Condens. Matter
13
,
5731
(
2001
).
92.
A.
Aguado
,
L.
Bernasconi
, and
P. A.
Madden
,
Chem. Phys. Lett.
356
,
431
(
2002
).
93.
A.
Aguado
,
L.
Bernasconi
, and
P. A.
Madden
,
J. Chem. Phys.
118
,
5704
(
2003
).
94.
A.
Aguado
and
P. A.
Madden
,
J. Chem. Phys.
118
,
5718
(
2003
).
95.
J.
Verhoeven
and
A.
Dymanus
,
J. Chem. Phys.
52
,
3222
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.