Recently an inorganic fullerine-like [As@Ni12@As20]3− onion with near-perfect icosahedral symmetry in the crystalline phase was reported [M. J. Moses, J. C. Fettinger, and B. W. Eichhorn, Science 300, 778 (2003)]. This paper presents a detailed computational study in the framework of density functional theory on various aspects of this molecule. The electronic structure of the As@Ni12@As20 is investigated in its neutral as well as −3 charged state together with its subunits As20 and As@Ni12 by the all electron linear combination of Gaussian-type orbitals method. The bonding is studied by examining the integrated charge within atomic sphere, the electron localization function, changes in the electron density distribution, and from vibrational modes. We find that strong covalent As-As bonds seen in isolated As20 become weaker in the As@Ni12@As20 and strong covalent As-Ni bonds are formed. The structural stability of all four clusters is examined by analyzing the energetics and by calculating the vibrational frequencies. Further, the infrared and Raman spectra is predicted for both the neutral and charged As@Ni12@As20 clusters. Finally, the energy barrier for removal of a single arsenic atom is calculated for the neutral As@Ni12@As20 cluster.

1.
M. J.
Moses
,
J. C.
Fettinger
, and
B. W.
Eichhorn
,
Science
300
,
778
(
2003
).
2.
R. Taylor, Lecture Notes on Fullerene Chemistry: A Handbook for Chemists (Imperial College Press, London).
3.
H. W.
Kroto
,
J. R.
Heath
,
S. C.
O’Brien
,
R. F.
Curl
, and
R. E.
Smalley
,
Nature (London)
318
,
162
(
1985
).
4.
W.
Kratschmer
,
L. D.
Lamb
,
K.
Fostiropoulous
, and
D. R.
Huffman
,
Nature (London)
347
,
254
(
1990
).
5.
K.
Jackson
and
B.
Nellermoe
,
Chem. Phys. Lett.
254
,
249
(
1996
).
6.
H.
Hiura
,
T.
Miyazaki
, and
T.
Kanayama
,
Phys. Rev. Lett.
86
,
1733
(
2001
);
T.
Miyazaki
,
H.
Hiura
, and
T.
Kanayama
,
Eur. Phys. J. D
24
,
241
(
2003
);
T.
Miyazaki
,
H.
Hiura
, and
T.
Kanayama
,
Phys. Rev. B
66
,
121403
(R) (
2002
).
7.
L.
Mitas
,
J. C.
Grossman
,
I.
Stich
, and
J.
Tobik
,
Phys. Rev. Lett.
84
,
1479
(
2000
);
X.
Zhang
,
G. L.
Li
, and
Z.
Gao
,
Rapid Commun. Mass Spectrom.
15
,
1573
(
2001
).
8.
S. C.
Sevov
and
J. D.
Corbett
,
Science
252
,
880
(
1993
).
9.
Z.
Chen
,
H.
Jiao
,
G.
Seifert
,
A. H. C.
Horn
,
D.
Yu
,
T.
Clark
,
W.
Thiel
, and
P.
von R. Schleyer
,
J. Comput. Chem.
24
,
948
(
2003
).
10.
D.
Goldberg
,
Y.
Bando
,
O.
Stephan
, and
K.
Kurashima
,
Appl. Phys. Lett.
75
,
2441
(
1998
).
11.
T.
Oku
,
A.
Nishiwaki
,
I.
Narita
, and
M.
Gonda
,
Chem. Phys. Lett.
380
,
620
(
2003
).
12.
R. R.
Zope
and
B. I.
Dunlap
,
Chem. Phys. Lett.
386
,
403
(
2004
), and references therein.
13.
J.
Bai
,
A. V.
Virovets
, and
M.
Scheer
,
Science
300
,
781
(
2003
).
14.
L. J.
Wang
and
M. Z.
Zgierski
,
Chem. Phys. Lett.
376
,
698
(
2003
).
15.
G.
Seifert
,
T.
Heine
, and
P. W.
Fowler
,
Eur. Phys. J. D
16
,
341
(
2001
).
16.
M.
Shen
and
H. F.
Schaefer
,
J. Chem. Phys.
101
,
2261
(
1994
).
17.
T.
Baruah
,
R. R.
Zope
,
S. L.
Richardson
, and
M. R.
Pederson
,
Phys. Rev. B
68
,
R241404
(
2003
).
18.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
);
A.
Savin
,
A. D.
Becke
,
J.
Flad
,
R.
Nesper
,
H.
Press
, and
H. G.
von Schnering
,
Angew. Chem., Int. Ed. Engl.
30
,
409
(
1991
);
B.
Silvi
and
A.
Savin
,
Nature (London)
371
,
63
(
1994
).
19.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
);
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
20.
M. R.
Pederson
and
K. A.
Jackson
,
Phys. Rev. B
41
,
7453
(
1990
);
K. A.
Jackson
and
M. R.
Pederson
,
Phys. Rev. B
42
,
3276
(
1990
);
M. R.
Pederson
and
K. A.
Jackson
,
Phys. Rev. B
43
,
7312
(
1991
).
21.
D. V.
Porezag
and
M. R.
Pederson
,
Phys. Rev. A
60
,
2840
(
1999
).
22.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
23.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes The Art of Scientific Computing (Cambridge University Press, Cambridge, England, 1986), p. 309.
24.
D. V.
Porezag
and
M. R.
Pederson
,
Phys. Rev. B
54
,
7830
(
1996
).
25.
Y.
Morino
,
T.
Ukaji
, and
T.
Ito
,
Bull. Chem. Soc. Jpn.
39
,
64
(
1966
).
26.
T.
Baruah
,
M. R.
Pederson
,
R. R.
Zope
, and
M. R.
Beltrán
,
Chem. Phys. Lett.
387
,
476
(
2004
).
27.
J. C.
Rienstra-Kiracofe
,
G. S.
Tschumper
, and
H. F.
Scaefer
III
,
Chem. Rev. (Washington, D.C.)
102
,
231
(
2002
).
28.
R. L.
Hettich
,
R. N.
Compton
, and
R. H.
Ritchie
,
Phys. Rev. Lett.
67
,
1242
(
1991
).
29.
P. A.
Limbach
,
L.
Schweikhard
,
K. A.
Cowen
,
M. T.
McDermott
,
A. G.
Marshall
, and
J. V.
Coe
,
J. Am. Chem. Soc.
113
,
6795
(
1991
).
30.
C.
Jin
,
R. L.
Hettich
,
R. N.
Compton
,
A.
Tuinman
,
A.
Derecskei-Kovacs
,
D. S.
Marynick
, and
B. I.
Dunlap
,
Phys. Rev. Lett.
73
,
2821
(
1994
).
31.
R. N.
Compton
,
A. A.
Tuinman
,
C. E.
Klots
,
M. R.
Pederson
, and
D. C.
Patton
,
Phys. Rev. Lett.
78
,
4367
(
1997
).
32.
O. T.
Ehrler
,
J. M.
Weber
,
F.
Furche
, and
M. M.
Kappes
,
Phys. Rev. Lett.
91
,
113006
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.