We demonstrate the workability of a TDDVR based [J. Chem. Phys. 118, 5302 (2003)], novel quantum-classical approach, for simulating scattering processes on a quasi-Jahn–Teller model [J. Chem. Phys. 105, 9141 (1996)] surface. The formulation introduces a set of DVR grid points defined by the Hermite part of the basis set in each dimension and allows the movement of grid points around the central trajectory. With enough trajectories (grid points), the method converges to the exact quantum formulation whereas with only one grid point, we recover the conventional molecular dynamics approach. The time-dependent Schrödinger equation and classical equations of motion are solved self-consistently and electronic transitions are allowed anywhere in the configuration space among any number of coupled states. Quantum-classical calculations are performed on diabatic surfaces (two and three) to reveal the effects of symmetry on inelastic and reactive state-to-state transition probabilities, along with calculations on an adiabatic surface with ordinary Born–Oppenheimer approximation. Excellent agreement between TDDVR and DVR results is obtained in both the representations.

1.
G. C. Schatz and M. A. Ratner, Quantum Mechanics in Chemistry (Prentice Hall, Englewood Cliffs, NJ, 1993).
2.
E. J.
Heller
,
J. Chem. Phys.
62
,
1544
(
1975
).
3.
S. Y.
Lee
and
E. J.
Heller
,
J. Chem. Phys.
76
,
3035
(
1982
).
4.
S. Y.
Lee
,
Chem. Phys.
108
,
451
(
1986
).
5.
R. D.
Coalson
and
M.
Karplus
,
Chem. Phys. Lett.
90
,
301
(
1982
).
6.
H.-D.
Meyer
,
Chem. Phys.
61
,
365
(
1981
).
7.
K. B.
Møller
and
N. E.
Henriksen
,
J. Chem. Phys.
105
,
5037
(
1996
).
8.
J.
Kucar
and
H.-D.
Meyer
,
J. Chem. Phys.
90
,
5566
(
1989
).
9.
D.
Hsu
and
D. F.
Coker
,
J. Chem. Phys.
96
,
4266
(
1992
).
10.
G. D.
Billing
,
J. Chem. Phys.
107
,
4286
(
1997
).
11.
J. B.
Delos
,
W. R.
Thorson
, and
S. K.
Knudson
,
Phys. Rev. A
6
,
709
(
1972
).
12.
J. B.
Delos
and
W. R.
Thorson
,
Phys. Rev. A
6
,
720
(
1972
);
J. B.
Delos
and
W. R.
Thorson
,
Phys. Rev. A
6
,
728
(
1972
).
13.
J. B.
Delos
and
W. R.
Thorson
,
Phys. Rev. Lett.
28
,
647
(
1972
).
14.
G. D.
Billing
,
Chem. Phys. Lett.
30
,
391
(
1975
).
15.
D. J.
Diestler
,
J. Chem. Phys.
78
,
2240
(
1983
).
16.
Z.
Kirson
,
R. B.
Gerber
,
A.
Nitzan
, and
M. A.
Ratner
,
Surf. Sci.
137
,
527
(
1984
);
Z.
Kirson
,
R. B.
Gerber
,
A.
Nitzan
, and
M. A.
Ratner
,
Surf. Sci.
151
,
531
(
1985
).
17.
L. J.
Dunne
,
J. N.
Murrell
, and
J. G.
Stamper
,
Chem. Phys. Lett.
112
,
497
(
1984
).
18.
S. I.
Sawada
,
A.
Nitzan
, and
H.
Metiu
,
Phys. Rev. B
32
,
851
(
1985
).
19.
Z.
Kotler
,
E.
Neria
, and
A.
Nitzan
,
Comput. Phys. Commun.
63
,
243
(
1991
).
20.
M.
Amarouche
,
F. X.
Gadea
, and
J.
Durup
,
Chem. Phys.
130
,
145
(
1989
).
21.
D. A.
Micha
,
J. Chem. Phys.
78
,
7138
(
1983
).
22.
W. H.
Miller
and
C. W.
McCurdy
,
J. Chem. Phys.
69
,
5163
(
1978
).
23.
C. W.
McCurdy
,
H. D.
Meyer
, and
W. H.
Miller
,
J. Chem. Phys.
70
,
3177
(
1979
).
24.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
);
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
71
,
2156
(
1979
);
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
72
,
2272
(
1980
).
25.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
26.
R. K.
Preston
and
J. C.
Tully
,
J. Chem. Phys.
54
,
4297
(
1971
).
27.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
28.
D. F.
Coker
and
L.
Xiao
,
J. Chem. Phys.
102
,
496
(
1995
).
29.
D.
Kohen
,
F. H.
Stillinger
, and
J. C.
Tully
,
J. Chem. Phys.
109
,
4713
(
1998
).
30.
J. C. Tully, in Modern Methods for Multidimensional Dynamics Computation in Chemistry, edited by D. L. Thompson (World Scientific, Singapore, 1998).
31.
R. P. Feynman and A. P. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
32.
P.
Pechukas
,
Phys. Rev.
181
,
166
(
1969
);
P.
Pechukas
,
Phys. Rev.
181
,
174
(
1969
).
33.
F. J.
Webster
,
J.
Schnitker
,
M. S.
Friedrichs
,
R. A.
Friesner
, and
P. J.
Rossky
,
Phys. Rev. Lett.
66
,
3172
(
1991
).
34.
F.
Webster
,
P. J.
Rossky
, and
R. A.
Friesner
,
Comput. Phys. Commun.
63
,
494
(
1991
).
35.
F.
Webster
,
E. T.
Wang
,
P. J.
Rossky
, and
R. A.
Friesner
,
J. Chem. Phys.
100
,
4835
(
1994
).
36.
S.
Sawada
and
H.
Metiu
,
J. Chem. Phys.
84
,
6293
(
1986
);
S.
Sawada
and
H.
Metiu
,
J. Chem. Phys.
84
,
227
(
1996
).
37.
R. D.
Coalson
,
J. Chem. Phys.
86
,
6823
(
1987
);
R. D.
Coalson
,
J. Phys. Chem.
100
,
7896
(
1996
).
38.
T. J.
Martinez
,
M.
Ben-Nun
, and
R. D.
Levine
,
J. Phys. Chem.
100
,
7884
(
1996
);
T. J.
Martinez
,
M.
Ben-Nun
, and
R. D.
Levine
,
J. Phys. Chem.
101
,
6389
(
1997
).
39.
T. J.
Martinez
,
M.
Ben-Nun
, and
G.
Ashkenazi
,
J. Chem. Phys.
104
,
2847
(
1996
).
40.
M.
Ben-Nun
and
T. J.
Martinez
,
J. Chem. Phys.
108
,
7244
(
1998
).
41.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
101
,
3049
(
1994
).
42.
W. H.
Miller
and
T. F.
George
,
J. Chem. Phys.
56
,
5668
(
1972
).
43.
J.
Stine
and
R. A.
Marcus
,
Chem. Phys. Lett.
15
,
536
(
1972
).
44.
K.
Haug
,
D. W.
Schwenke
,
D. G.
Truhlar
,
Y.
Zhang
,
J. Z. H.
Zhang
, and
D. J.
Kouri
,
J. Chem. Phys.
87
,
1892
(
1987
).
45.
G. C.
Lynch
,
P.
Halvick
,
D. G.
Truhlar
,
B. C.
Garrett
,
D. W.
Schwenke
, and
D. J.
Kouri
,
Z. Naturforsch., A: Phys. Sci.
44
,
427
(
1989
).
46.
Y.-C.
Sun
and
G. A.
Voth
,
J. Chem. Phys.
98
,
7451
(
1993
).
47.
S. E.
Wonchoba
and
D. G.
Truhlar
,
J. Chem. Phys.
99
,
9637
(
1993
).
48.
Y.
Zeiri
,
G.
Katz
,
R.
Kosloff
,
M. S.
Topaler
,
D. G.
Truhlar
, and
J. C.
Polanyi
,
Chem. Phys. Lett.
300
,
523
(
1999
).
49.
A. L.
Kaledin
and
W. H.
Miller
,
J. Chem. Phys.
118
,
7174
(
2003
).
50.
Y.
Zheo
and
W. H.
Miller
,
J. Chem. Phys.
117
,
9605
(
2002
).
51.
S.
Adhikari
and
G. D.
Billing
,
Chem. Phys. Lett.
305
,
109
(
1999
).
52.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
111
,
48
(
1999
).
53.
S.
Adhikari
and
G. D.
Billing
,
Chem. Phys. Lett.
309
,
249
(
1999
).
54.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
113
,
1409
(
2000
).
55.
G. D.
Billing
and
S.
Adhikari
,
Chem. Phys. Lett.
321
,
197
(
2000
).
56.
B.
Barkakaty
and
S.
Adhikari
,
J. Chem. Phys.
118
,
5302
(
2003
).
57.
D. J.
Tannor
,
A.
Besprozvannaya
, and
C. J.
Williams
,
J. Chem. Phys.
96
,
2998
(
1992
).
58.
H.
Guo
,
J. Chem. Phys.
96
,
6629
(
1992
).
59.
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
).
60.
R. W.
Heather
and
J. C.
Light
,
J. Chem. Phys.
79
,
147
(
1983
).
61.
J. V. Lill, Ph.D. thesis, University of Chicago, 1982.
62.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
63.
Z.
Bačić
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
64.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
65.
E.
Sim
and
N.
Makri
,
J. Chem. Phys.
102
,
5616
(
1995
).
66.
D. J.
Kouri
,
X.
Ma
,
W.
Zhu
,
B. M.
Petit
, and
D. K.
Hoffman
,
J. Phys. Chem.
96
,
9622
(
1992
);
Y.
Huang
,
D. J.
Kouri
,
M.
Arnold
,
T. L.
Marchioro
II
, and
D. K.
Hoffman
,
J. Chem. Phys.
99
,
1028
(
1993
).
67.
A.
Donoso
and
C. C.
Martens
,
J. Chem. Phys.
112
,
3980
(
2000
).
68.
M. D.
Hack
,
A. M.
Wensmann
,
D. G.
Truhlar
,
M.
Ben-Nun
, and
T. J.
Martinez
,
J. Chem. Phys.
115
,
1172
(
2001
).
69.
O. V.
Prezhdo
and
P. J.
Rossky
,
J. Chem. Phys.
107
,
825
(
1997
).
70.
M.
Baer
and
R.
Englman
,
Chem. Phys. Lett.
265
,
105
(
1996
).
71.
M.
Baer
,
J. Chem. Phys.
107
,
10662
(
1997
).
72.
R.
Baer
,
D. M.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
73.
M.
Baer
and
A. J.
Beswick
,
Phys. Rev. A
19
,
1559
(
1979
).
74.
M.
Baer
and
A.
Alijah
,
Chem. Phys. Lett.
319
,
489
(
2000
).
75.
M.
Baer
,
J. Phys. Chem. A
104
,
3181
(
2000
).
76.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
107
,
6213
(
1997
).
77.
S.
Adhikari
and
G. D.
Billing
,
Chem. Phys. Lett.
284
,
31
(
1998
);
S.
Adhikari
and
G. D.
Billing
,
Chem. Phys. Lett.
289
,
219
(
1998
).
78.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
111
,
40
(
1999
).
79.
M.
Baer
,
S. H.
Lin
,
A.
Alijah
,
S.
Adhikari
, and
G. D.
Billing
,
Phys. Rev. A
62
,
032506
(
2000
).
80.
S.
Adhikari
,
G. D.
Billing
,
A.
Alijah
,
S. H.
Lin
, and
M.
Baer
,
Phys. Rev. A
62
,
032507
(
2000
).
81.
S.
Adhikari
and
G. D.
Billing
,
Adv. Chem. Phys.
124
,
143
(
2002
).
82.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
This content is only available via PDF.
You do not currently have access to this content.