We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.

1.
S. R.
Broadbent
and
J. M.
Hammersley
,
Proc. Cambridge Philos. Soc.
53
,
629
(
1957
).
2.
D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985).
3.
G.
Stell
,
J. Phys.: Condens. Matter
8
,
A1
(
1996
).
4.
J.
Asikainen
and
T.
Ale-Nissila
,
Phys. Rev. E
61
,
5002
(
2000
).
5.
J. W.
Evans
and
D. E.
Danders
,
J. Vac. Sci. Technol. A
6
,
726
(
1988
).
6.
X.
Yu
,
P. M.
Duxbury
,
G.
Seffers
, and
M. A.
Dubson
,
Phys. Rev. B
44
,
13163
(
1991
).
7.
T. L.
Hill
,
J. Chem. Phys.
23
,
617
(
1955
).
8.
A.
Coniglio
,
U.
DeAngelis
, and
A.
Forlani
,
J. Phys. A
10
,
1123
(
1977
).
9.
Y. C.
Chiew
and
E. D.
Glandt
,
J. Phys. A
16
,
2599
(
1983
).
10.
Y. C.
Chiew
,
G.
Stell
, and
E. D.
Glandt
,
J. Chem. Phys.
83
,
761
(
1985
).
11.
T.
Desimone
,
S.
Demoulini
, and
R. M.
Stratt
,
J. Chem. Phys.
85
,
391
(
1986
).
12.
S. C.
Netemeyer
and
E. D.
Glandt
,
J. Chem. Phys.
85
,
6054
(
1986
).
13.
S.
Maren
and
L.
Reatto
,
J. Chem. Phys.
89
,
5038
(
1988
).
14.
E.
Waisman
,
Mol. Phys.
25
,
45
(
1973
).
15.
S. A.
Safran
,
I.
Webman
, and
G. S.
Grest
,
Phys. Rev. A
32
,
506
(
1985
).
16.
N. A.
Seaton
and
E. D.
Glandt
,
J. Chem. Phys.
87
,
1785
(
1987
).
17.
Y. C.
Chiew
and
Y. H.
Wang
,
J. Chem. Phys.
89
,
6385
(
1988
).
18.
W.
Norde
and
J.
Lyklema
,
J. Colloid Interface Sci.
66
,
257
(
1978
).
19.
I.
Michaeli
,
D. R.
Absolom
, and
C. J.
van Oss
,
J. Colloid Interface Sci.
77
,
586
(
1980
).
20.
T. P.
Burghardt
and
D.
Axelrod
,
Biophys. J.
33
,
455
(
1981
).
21.
R. D.
Tilton
,
C. R.
Robertson
, and
A. P.
Gast
,
J. Colloid Interface Sci.
137
,
192
(
1990
).
22.
R. D.
Tilton
,
A. C.
Gast
, and
C. R.
Robertson
,
Biophys. J.
58
,
1321
(
1990
).
23.
G. L.
Kellogg
and
P. J.
Feibelman
,
Phys. Rev. Lett.
64
,
3143
(
1990
).
24.
D. D.
Chambliss
and
K.
Johnson
,
Phys. Rev. B
50
,
5012
(
1994
).
25.
H.
Brune
,
J.
Wintterlin
,
R. J.
Behm
, and
G.
Ertl
,
Phys. Rev. Lett.
68
,
624
(
1992
).
26.
R. E.
Belardinelli
,
D. H.
Linares
, and
V. D.
Pereyra
,
J. Chem. Phys.
111
,
1265
(
1999
).
27.
P.
Danwanichakul
and
E. D.
Glandt
,
J. Chem. Phys.
114
,
1785
(
2001
).
28.
Q.
Wang
,
P.
Danwanichakul
, and
E. D.
Glandt
,
J. Chem. Phys.
112
,
6733
(
2000
).
29.
C. Croxton, Introduction to Liquid State Physics (Wiley, New York, 1975).
30.
F.
Lado
,
J. Comput. Phys.
8
,
417
(
1971
).
31.
L.
Reatto
,
G.
Stell
, and
M.
Tau
,
J. Stat. Phys.
64
,
481
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.