The interaction of NaCl with solid water, deposited on tungsten at 80 K, was investigated with metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS) (He I). We have studied the ionization of Cl(3p) and the 1b1,3a1, and 1b2 bands of molecular water. The results are supplemented by first-principles density functional theory (DFT) calculations of the electronic structure of solvated Cl ions. We have prepared NaCl/water interfaces at 80 K, NaCl layers on thin films of solid water, and H2O ad-layers on thin NaCl films; they were annealed between 80 and 300 K. At 80 K, closed layers of NaCl on H2O, and vice versa, are obtained; no interpenetration of the two components H2O and NaCl was observed. However, ionic dissociation of NaCl takes place when H2O and NaCl are in direct contact. Above 115 K solvation of the ionic species Cl becomes significant. Our results are compatible with a transition of Cl species from an interface site (Cl in direct contact with the NaCl lattice) to an energetically favored configuration, where Cl species are solvated. The DFT calculations show that Cl species, surrounded by their solvation shell, are nevertheless by some extent accessed by MIES because the Cl(3p)-charge cloud extends through the solvation shell. Water desorption is noticeable around 145 K, but is not complete before 170 K, about 15 K higher than for pure solid water. Above 150 K the NaCl-induced modification of the water network gives rise to gas phase like structures in the water spectra. In particular, the 3a1 emission turns into a well-defined peak. This suggests that under these conditions water molecules interact mainly with Cl rather than among themselves. Above 170 K only Cl is detected on the surface and desorbs around 450 K.

1.
A. R.
Ravishankara
,
Science
276
,
1058
(
1997
).
2.
E. E.
Gard
,
M. J.
Kleeman
,
D. S.
Gross
et al.,
Science
279
,
1184
(
1998
).
3.
S.-C.
Park
,
T.
Pradeep
, and
H.
Kang
,
J. Chem. Phys.
113
,
9373
(
2000
).
4.
V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994).
5.
G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry (VCH, Weinheim, 1985).
6.
H.
Morgner
,
Adv. At., Mol., Opt. Phys.
42
,
387
(
2000
).
7.
Y.
Harada
,
S.
Masuda
, and
H.
Osaki
,
Chem. Rev. (Washington, D.C.)
97
,
1897
(
1997
).
8.
J.
Günster
,
S.
Krischok
,
V.
Kempter
,
J.
Stultz
, and
D. W.
Goodman
,
Surf. Rev. Lett.
9
,
1511
(
2002
).
9.
A.
Borodin
,
O.
Höfft
,
S.
Krischok
, and
V.
Kempter
,
Nucl. Instrum. Methods Phys. Res. B
203
,
205
(
2003
).
10.
A.
Borodin
,
O.
Höfft
,
S.
Krischok
, and
V.
Kempter
,
J. Phys. Chem. B
107
,
9357
(
2003
).
11.
A.
Borodin
,
O.
Höfft
,
U.
Kahnert
,
V.
Kempter
,
Y.
Ferro
, and
A.
Allouche
,
J. Chem. Phys.
120
,
8692
(
2004
).
12.
Y.
Ferro
,
A.
Allouche
, and
V.
Kempter
,
J. Chem. Phys.
120
,
8683
(
2004
).
13.
J. D.
Graham
and
J. T.
Roberts
,
J. Phys. Chem.
98
,
5974
(
1994
).
14.
J. P.
Devlin
,
Int. Rev. Phys. Chem.
9
,
29
(
1990
).
15.
M. Faubel, in Photoionization and Photodetachment, Part I, edited by C. Y. Ng (World Scientific, Singapore, 2000), p. 634.
16.
R.
Böhm
,
H.
Morgner
,
J.
Overbrodhage
, and
M.
Wulf
,
Surf. Sci.
317
,
407
(
1994
).
17.
J.
Dietter
and
H.
Morgner
,
Chem. Phys.
220
,
261
(
1997
).
18.
W.
Maus-Friedrichs
,
M.
Wehrhahn
,
S.
Dieckhoff
, and
V.
Kempter
,
Surf. Sci.
249
,
149
(
1991
).
19.
D.
Ochs
,
W.
Maus-Friedrichs
,
M.
Brause
et al.,
Surf. Sci.
365
,
557
(
1996
).
20.
D.
Ochs
,
M.
Brause
,
B.
Braun
,
W.
Maus-Friedrichs
, and
V.
Kempter
,
Surf. Sci.
397
,
101
(
1998
).
21.
D.
Ochs
,
B.
Braun
,
W.
Maus-Friedrichs
, and
V.
Kempter
,
Surf. Sci.
417
,
390
(
1998
).
22.
S.
Krischok
,
O.
Höfft
,
J.
Günster
,
J.
Stultz
,
D. W.
Goodman
, and
V.
Kempter
,
Surf. Sci.
495
,
8
(
2001
).
23.
S.
Dieckhoff
,
H.
Müller
,
H.
Brenten
,
W.
Maus-Friedrichs
, and
V.
Kempter
,
Surf. Sci.
279
,
233
(
1992
).
24.
A.
Hitzke
,
S.
Pülm
,
H.
Müller
,
R.
Hausmann
,
J.
Günster
,
S.
Dieckhoff
,
W.
Maus-Friedrichs
, and
V.
Kempter
,
Surf. Sci.
291
,
67
(
1993
).
25.
S.
Pülm
,
A.
Hitzke
,
J.
Günster
,
H.
Müller
, and
V.
Kempter
,
Radiat. Eff. Defects Solids
128
,
151
(
1994
).
26.
D.
Ochs
,
M.
Brause
,
P.
Stracke
et al.,
Surf. Sci.
383
,
162
(
1997
).
27.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
28.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
30.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
31.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
32.
M. Patra and M. Karttunen, arXiv:physics/0211059 v2 2003.
33.
P.
Eeken
,
J. M.
Fluit
,
A.
Niehaus
, and
I.
Urazgil’din
,
Surf. Sci.
273
,
160
(
1992
).
34.
L. N.
Kantorovich
,
A. L.
Shluger
,
P. V.
Sushko
,
J.
Günster
,
P.
Stracke
,
D. W.
Goodman
, and
V.
Kempter
,
Faraday Discuss.
114
,
173
(
1999
).
35.
M.
Brause
,
S.
Skordas
, and
V.
Kempter
,
Surf. Sci.
445
,
224
(
2000
).
36.
S.
Casassa
,
P.
Ugliengo
, and
C.
Pisani
,
J. Chem. Phys.
106
,
8030
(
1997
).
37.
T.
Munakata
,
T.
Hirooka
, and
K.
Kuchitsu
,
J. Electron Spectrosc. Relat. Phenom.
18
,
51
(
1980
).
38.
W. C. Price, in Electron Spectroscopy: Theory, Techniques and Applications, edited by C. R. Brundle and A. D. Baker (Academic, New York, 1977), Vol. 1.
39.
T.
Poole
,
J. G.
Jenkins
,
J.
Liesegang
, and
C. G.
Leckey
,
Phys. Rev. B
11
,
5179
(
1975
).
40.
N. O.
Lipari
and
A. B.
Kunz
,
Phys. Rev. B
3
,
491
(
1971
).
41.
J. M.
Heuft
and
E. J.
Meijer
,
J. Chem. Phys.
119
,
11788
(
2003
).
42.
R.
Souda
,
Phys. Rev. B
65
,
245419
(
2002
).
43.
H.
Shinto
,
T.
Sakakibara
, and
K.
Higashitani
,
J. Chem. Eng. Jpn.
31
,
771
(
1998
).
44.
C.
Toubin
,
S.
Picaud
,
P. N. M.
Hoang
,
C.
Girardet
,
R. M.
Lynden-Bell
, and
J. T.
Hynes
,
J. Chem. Phys.
118
,
9814
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.