The kinetics of the reaction of N3+ with O2 has been studied from 120 to 1400 K using both a selected ion flow tube and high-temperature flowing afterglow. The rate constant decreases from 120 K to ∼1200 K and then increases slightly up to the maximum temperature studied, 1400 K. The rate constant compares well to most of the previous measurements in the overlapping temperature range. Comparing the results to drift tube data shows that there is not a large difference between increasing the translational energy available for reaction and increasing the internal energy of the reactants over much of the range, i.e., all types of energies drive the reactivity equally. The reaction produces both NO+ and NO2+, the latter of which is shown to be the higher energy NOO+ linear isomer. The ratio of NOO+ to NO+ decreases from a value of over 2 at 120 K to less than 0.01 at 1400 K because of dissociation of NOO+ at the higher temperatures. This ratio decreases exponentially with increasing temperature. High-level theoretical calculations have also been performed to compliment the data. Calculations using multi-reference configuration interaction theory at the MRCISD(Q)/cc-pVTZ level of theory show that singlet NOO+ is linear and is 4.5 eV higher in energy than ONO+. A barrier of 0.9 eV prevents dissociation into NO+ and O(1D); however, a crossing to a triplet surface connects to NO+ and O(3P) products. A singlet and a triplet potential energy surface leading to products have been determined using coupled cluster theory at the CCSD(T)/aug-cc-pVQZ level on structures optimized at the Becke3-Lee, Yang, and Parr (B3LYP)/aug-cc-pVTZ level of theory. The experimental results and reaction mechanism are evaluated using these surfaces.

1.
R. E.
Continetti
,
D. R.
Cyr
,
D. L.
Osborn
,
D. J.
Leahy
, and
D. M.
Neumark
,
J. Chem. Phys.
99
,
2616
(
1993
).
2.
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
J. Chem. Phys.
93
,
4485
(
1990
).
3.
J. M.
Dyke
,
N. B. H.
Jonathan
,
A. E.
Lewis
, and
A.
Morris
,
Mol. Phys.
47
,
1231
(
1982
).
4.
D. A.
Dixon
,
D.
Feller
,
K. O.
Christe
et al.,
J. Am. Chem. Soc.
126
,
834
(
2004
).
5.
NIST Chemistry WebBook, NIST Standard Reference Database Vol. 69, edited by W. G. Mallard and P. J. Linstrom (National Institutes of Standards and Technology, Gaithersburg, MD, 2001) (http://webbook.nist.gov/chemistry).
6.
D. B.
Dunkin
,
F. C.
Fehsenfeld
,
A. L.
Schmeltekopf
, and
E. E.
Ferguson
,
J. Chem. Phys.
54
,
3817
(
1971
).
7.
D.
Smith
,
N. G.
Adams
, and
T. M.
Miller
,
J. Chem. Phys.
69
,
308
(
1978
).
8.
W.
Lindinger
,
J. Chem. Phys.
64
,
3720
(
1976
).
9.
K.
Hiraoka
,
J. Chem. Phys.
91
,
6071
(
1989
).
10.
S.
Matsuoka
,
H.
Nakamura
, and
T.
Tamura
,
J. Chem. Phys.
75
,
681
(
1981
).
11.
J. L.
McCrumb
and
P.
Warneck
,
J. Chem. Phys.
66
,
5416
(
1977
).
12.
S.
Matsuoka
,
H.
Nakamura
, and
T.
Tamura
,
J. Chem. Phys.
79
,
825
(
1983
).
13.
K.
Hiraoka
and
S.
Yamabe
,
J. Chem. Phys.
90
,
3268
(
1989
).
14.
A. J.
Midey
,
S.
Williams
,
S. T.
Arnold
, and
A. A.
Viggiano
,
J. Phys. Chem. A
106
,
11726
(
2002
).
15.
A. A.
Viggiano
,
R. A.
Morris
,
F.
Dale
,
J. F.
Paulson
,
K.
Giles
,
D.
Smith
, and
T.
Su
,
J. Chem. Phys.
93
,
1149
(
1990
).
16.
P. M.
Hierl
,
J. F.
Friedman
,
T. M.
Miller
et al.,
Rev. Sci. Instrum.
67
,
2142
(
1996
).
17.
S. T.
Arnold
,
S.
Williams
,
I.
Dotan
,
A. J.
Midey
,
R. A.
Morris
, and
A. A.
Viggiano
,
J. Phys. Chem. A
103
,
8421
(
1999
).
18.
A. J.
Midey
,
S.
Williams
,
S. T.
Arnold
,
I.
Dotan
,
R. A.
Morris
, and
A. A.
Viggiano
,
Int. J. Mass Spectrom.
195
,
327
(
2000
).
19.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
,Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
);
D. E.
Woon
and
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
);
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
);
A.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
, Jr.
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1997
).
20.
D. Smith and N. G. Adams, in Gas Phase Ion Chemistry, edited by M. T. Bowers (Academic, New York, 1979), Vol. 1, p. 1.
21.
A. A. Viggiano and S. Williams, in Advances in Gas Phase Ion Chemistry, edited by N. G. Adams and L. M. Babcock (Academic, New York, 2001), Vol. 4, p. 85.
22.
A. A.
Viggiano
,
W. B.
Knighton
,
S.
Williams
,
S. T.
Arnold
,
A. J.
Midey
, and
I.
Dotan
,
Int. J. Mass Spectrom.
223–224
,
397
(
2003
).
23.
S. T.
Arnold
,
R. A.
Morris
, and
A. A.
Viggiano
,
J. Chem. Phys.
103
,
9242
(
1995
);
J. V.
Seeley
,
R. A.
Morris
,
A. A.
Viggiano
,
H.
Wang
, and
W. L.
Hase
,
J. Am. Chem. Soc.
119
,
577
(
1997
).
24.
A.
Filippi
,
A.
Troiani
, and
M.
Speranza
,
J. Phys. Chem.
101
,
9344
(
1997
).
25.
M.
Guilhaus
,
A. G.
Brenton
,
J. H.
Beynon
,
A.
O’Keefe
,
M. T.
Bowers
, and
J. R.
Gilbert
,
Int. J. Mass Spectrom.
63
,
111
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.