Potential surfaces, dipole moments, and polarizabilities are calculated by ab initio methods [unrestricted MP2(full)/6-311++G(2d,2p)] along the reaction paths of the F+CH4 and Cl+CH4 reaction systems. It is found that in general dipole moments and polarizabilities exhibit peaks near the transition state. In the case of X=F these peaks are on the products side and in the case of X=Cl they are on the reactants side indicating an early transition state in the case of fluorine and a late transition state in the case of chlorine. An analysis of the geometric changes along the reaction paths reveals a one-to-one correspondence between the peaks in the electric properties and peaks in the rate of change of certain internal geometric coordinates along the reaction path. Interaction with short infrared intense laser fields pulses leads to the possibility of interferences between the dipole and polarizability laser-molecule interactions as a function of laser phase. The larger dipole moment in the Cl+CH4 reaction can lead to the creation of deep wells (instead of energy barriers) and new strongly bound states in the transition state region. This suggests possible coherent control of the reaction path as a function of the absolute phase of the incident field, by significant modification of the potential surfaces along the reaction path and, in particular, in the transition state region.

1.
T.
Brabec
and
F.
Krausz
,
Rev. Mod. Phys.
72
,
545
(
2000
).
2.
A. D. Bandrauk and H. Kono, in Advances in Multiphoton Processes and Spectroscopy, edited by S. H. Lin (World Scientific, Singapore, 2003), Vol. 15, p. 150.
3.
M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular processes (Wiley-Interscience, New York, 2003).
4.
G.
Paulus
,
F.
Lindner
,
H.
Walther
et al.,
Phys. Rev. Lett.
91
,
253004
(
2003
).
5.
V. S.
Yakovlev
et al.,
Appl. Phys. B: Laser Opt.
B76
,
329
(
2003
).
6.
S.
Chelkowski
and
A. D.
Bandrauk
,
Phys. Rev. A
65
,
061802
(
2002
);
S.
Chelkowski
and
A. D.
Bandrauk
,
Opt. Lett.
29
,
13
(
2004
).
7.
A. E.
Orel
and
W. H.
Miller
,
Chem. Phys. Lett.
57
,
362
(
1978
);
A. E.
Orel
and
W. H.
Miller
,
J. Chem. Phys.
73
,
241
(
1980
).
8.
A. E.
Orel
and
W. H.
Miller
,
J. Chem. Phys.
70
,
4393
(
1979
).
9.
T. T.
Nguyen-Dang
and
A. D.
Bandrauk
,
J. Chem. Phys.
79
,
3256
(
1983
).
10.
A. D.
Bandrauk
and
T. T.
Nguyen-Dang
,
J. Chem. Phys.
83
,
2840
(
1985
).
11.
A.
Conjusteau
,
A. D.
Bandrauk
, and
P. B.
Corkum
,
J. Chem. Phys.
106
,
9095
(
1997
).
12.
P.
Dietrich
and
P. B.
Corkum
,
J. Chem. Phys.
97
,
3187
(
1992
).
13.
C.
Dion
,
A.
Keller
,
O.
Atabek
, and
A. D.
Bandrauk
,
Phys. Rev. A
59
,
1382
(
1999
).
14.
A. D.
Bandrauk
and
S.
Chelkowski
,
Phys. Rev. Lett.
84
,
3562
(
2000
).
15.
J.
Levesque
,
S.
Chelkowski
, and
A. D.
Bandrauk
,
J. Phys. Chem.
107
,
3457
(
2003
).
16.
M. Y.
Ivanov
,
D. R.
Matusek
, and
J. S.
Wright
,
Phys. Rev. A
54
,
5159
(
1996
).
17.
W.
Shiu
,
J.
Lin
,
K.
Liu
,
M.
Wu
, and
D.
Parker
,
J. Chem. Phys.
120
,
117
(
2004
).
18.
S. A.
Kandel
and
R. N.
Zare
,
J. Chem. Phys.
109
,
9719
(
1998
).
19.
L. V.
Keldysh
,
Sov. Phys. JETP
20
,
1307
(
1965
).
20.
P. B.
Corkum
,
N. H.
Burnett
, and
F.
Brunel
,
Phys. Rev. Lett.
62
,
1259
(
1989
).
21.
L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New York 1965), p. 276.
22.
H.
Stapelfeldt
and
T.
Seideman
,
Rev. Mod. Phys.
75
,
543
(
2003
).
23.
L.
Pan
,
K. T.
Taylor
, and
C. W.
Clark
,
J. Opt. Soc. Am.
7
,
509
(
1990
).
24.
T.
Kobayashi
,
K.
Sasagane
,
F.
Aiga
, and
K.
Yamaguchi
,
J. Chem. Phys.
110
,
11720
(
1999
).
25.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
26.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.9, Gaussian Inc., Pittsburgh, PA, 1998.
27.
K.
Fukui
,
J. Phys. Chem.
74
,
4161
(
1970
).
28.
K.
Fukui
,
Acc. Chem. Res.
14
,
363
(
1981
).
29.
C.
Gonzalez
and
H. B.
Schlegel
,
J. Chem. Phys.
90
,
2154
(
1989
).
30.
C.
Gonzalez
and
H. B.
Schlegel
,
J. Phys. Chem.
94
,
5523
(
1990
).
31.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev. B
136
,
864
(
1964
).
32.
J. C.
Corchado
and
J.
Espinosa-Garcı́a
,
J. Chem. Phys.
105
,
3152
(
1996
).
33.
D.
Troya
,
J.
Millán
,
I.
Baños
, and
M.
Gonzalez
,
J. Chem. Phys.
120
,
5181
(
2004
).
34.
G. A. Russell, Free Radicals, edited by J. K. Kochi (Wiley-Interscience, New York, 1973), Vol. 1.
35.
M. L. Poutsma, Free Radicals, edited by J. K. Kochi (Wiley-Interscience, New York, 1973), Vol. 2.
36.
J. A. Kerr, Free Radicals, edited by J. K. Kochi (Wiley-Interscience, New York, 1973), Vol. 1.
37.
K. Ed. Kuchitsu, Structure of Free Polyatomic Molecules-Basic Data (Springer, Berlin, 1998).
38.
Handbook of Chemistry and Physics, 81st ed. (CRC, New York, 2000).
39.
C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Vol. 1.
40.
P.
Politzer
,
P.
Jin
, and
J. S.
Murray
,
J. Chem. Phys.
117
,
8197
(
2002
).
41.
K.
Ohmiya
and
S.
Kato
,
J. Chem. Phys.
119
,
1601
(
2003
).
42.
Y. A.
Hong
,
J. R.
Hahn
, and
H.
Kang
,
J. Chem. Phys.
108
,
4367
(
1998
).
43.
H.
Nikura
,
D. N.
Villeneuve
, and
P. B.
Corkum
,
Phys. Rev. Lett.
92
,
133002
(
2004
).
44.
Y.
Okuno
,
S.
Yokoyama
, and
S.
Mashiko
,
J. Chem. Phys.
113
,
3136
(
2000
).
45.
H. A.
Bechtel
,
J. P.
Camden
,
D.
Brown
, and
R. N.
Zare
,
J. Chem. Phys.
120
,
5096
(
2004
).
46.
D. G.
Truhlar
and
A. D.
Isaacson
,
J. Chem. Phys.
77
,
3516
(
1982
).
47.
T.
Kirchner
,
Phys. Rev. Lett.
89
,
093203
(
2002
).
48.
F-Legare
and
A. D.
Bandrauk
,
Phys. Rev. A
64
,
031406
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.