A quantum-classical limit of the canonical equilibrium time correlation function for a quantum system is derived. The quantum-classical limit for the dynamics is obtained for quantum systems comprising a subsystem of light particles in a bath of heavy quantum particles. In this limit the time evolution of operators is determined by a quantum-classical Liouville operator, but the full equilibrium canonical statistical description of the initial condition is retained. The quantum-classical correlation function expressions derived here provide a way to simulate the transport properties of quantum systems using quantum-classical surface-hopping dynamics combined with sampling schemes for the quantum equilibrium structure of both the subsystem of interest and its environment.

1.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
);
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
2.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
3.
E.
Rabani
and
D.
Reichman
,
J. Chem. Phys.
120
,
1458
(
2004
).
4.
S. A.
Egorov
,
E.
Rabani
, and
B. J.
Berne
,
J. Phys. Chem. B
103
,
10978
(
1999
).
5.
A. A.
Golosov
,
D. R.
Reichman
, and
E.
Rabani
,
J. Chem. Phys.
118
,
457
(
2003
).
6.
P.
Pechukas
,
Phys. Rev.
181
,
166
(
1969
).
7.
M. F.
Herman
,
Annu. Rev. Phys. Chem.
45
,
83
(
1994
).
8.
J. C. Tully, Modern Methods for Multidimensional Dynamics Computations in Chemistry, edited by D. L. Thompson (World Scientific, New York, 1998), p. 34.
9.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
);
J. C.
Tully
,
Int. J. Quantum Chem.
25
,
299
(
1991
);
S.
Hammes-Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
);
D. S.
Sholl
and
J. C.
Tully
,
J. Chem. Phys.
109
,
7702
(
1998
).
10.
L.
Xiao
and
D. F.
Coker
,
J. Chem. Phys.
100
,
8646
(
1994
);
D. F.
Coker
and
L.
Xiao
,
J. Chem. Phys.
102
,
496
(
1995
);
H. S.
Mei
and
D. F.
Coker
,
J. Chem. Phys.
104
,
4755
(
1996
).
11.
F.
Webster
,
P. J.
Rossky
, and
P. A.
Friesner
,
Comput. Phys. Commun.
63
,
494
(
1991
);
F.
Webster
,
E. T.
Wang
,
P. J.
Rossky
, and
P. A.
Friesner
,
J. Chem. Phys.
100
,
4835
(
1994
).
12.
T. J.
Martinez
,
M.
Ben-Nun
, and
R. D.
Levine
,
J. Phys. Chem. A
101
,
6389
(
1997
).
13.
A.
Warshel
and
Z. T.
Chu
,
J. Chem. Phys.
93
,
4003
(
1990
).
14.
I. V.
Aleksandrov
,
Z. Naturforsch. A
36a
,
902
(
1981
).
15.
V. I.
Gerasimenko
,
Repts. Ukranian Acad. Sci.
10
,
65
(
1981
);
V. I.
Gerasimenko
,
Teor. Mat. Fiz.
150
,
7
(
1982
).
16.
W.
Boucher
and
J.
Traschen
,
Phys. Rev. D
37
,
3522
(
1988
).
17.
W. Y.
Zhang
and
R.
Balescu
,
J. Plasma Phys.
40
,
199
(
1988
);
R.
Balescu
and
W. Y.
Zhang
,
J. Plasma Phys.
40
,
215
(
1988
).
18.
C. C.
Martens
and
J.-Y.
Fang
,
J. Chem. Phys.
106
,
4918
(
1996
);
A.
Donoso
and
C. C.
Martens
,
J. Phys. Chem.
102
,
4291
(
1998
);
D.
Kohen
and
C. C.
Martens
,
J. Chem. Phys.
111
,
4343
(
1999
);
D.
Kohen
and
C. C.
Martens
,
J. Chem. Phys.
112
,
7345
(
2000
).
19.
I.
Horenko
,
C.
Salzmann
,
B.
Schmidt
, and
C.
Schütte
,
J. Chem. Phys.
117
,
11075
(
2002
).
20.
C.
Wan
and
J.
Schofield
,
J. Chem. Phys.
113
,
7047
(
2000
).
21.
R.
Kapral
and
G.
Ciccotti
,
J. Chem. Phys.
110
,
8919
(
1999
).
22.
E. P.
Wigner
,
Phys. Rev.
40
,
749
(
1932
);
K.
Imre
,
E.
Özizmir
,
M.
Rosenbaum
, and
P. F.
Zwiefel
,
J. Math. Phys.
5
,
1097
(
1967
);
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
).
23.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
110
,
1343
(
1999
).
24.
D. Mac
Kernan
,
G.
Ciccotti
, and
R.
Kapral
,
J. Chem. Phys.
116
,
2346
(
2002
).
25.
D. Mac
Kernan
,
G.
Ciccotti
, and
R.
Kapral
,
J. Phys.: Condens. Matter
14
,
9069
(
2002
).
26.
S.
Nielsen
,
R.
Kapral
, and
G.
Ciccotti
,
J. Chem. Phys.
112
,
6543
(
2000
).
27.
S.
Nielsen
,
R.
Kapral
, and
G.
Ciccotti
,
J. Stat. Phys.
101
,
225
(
2000
).
28.
A.
Sergi
,
D. Mac
Kernan
,
G.
Ciccotti
, and
R.
Kapral
,
Theor. Chem. Acc.
110
,
49
(
2003
).
29.
S.
Nielsen
,
R.
Kapral
, and
G.
Ciccotti
,
J. Chem. Phys.
115
,
5805
(
2001
).
30.
R. Kapral and G. Ciccotti, in Bridging Time Scales: Molecular Simulations for the Next Decade, 2001, A Statistical Mechanical Theory of Quantum Dynamics in Classical Environments, edited by P. Nielaba, M. Mareschal, and G. Ciccotti (Springer, Berlin, 2003), p. 445.
31.
A.
Sergi
and
R.
Kapral
,
J. Chem. Phys.
118
,
8566
(
2003
);
A.
Sergi
and
R.
Kapral
,
J. Chem. Phys.
119
,
12776
(
2003
).
32.
V. S.
Filinov
,
Y. V.
Medvedev
, and
V. L.
Kamskyi
,
Mol. Phys.
85
,
711
(
1995
);
V. S.
Filinov
,
Mol. Phys.
88
,
1517
(
1996
);
V. S.
Filinov
,
Mol. Phys.
88
,
1529
(
1996
);
V. S. Filinov, S. Bonella, Y. E. Lozovik, A. Filinov, and I. Zacharov in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), p. 667.
33.
S. A.
Egorov
,
E.
Rabani
, and
B. J.
Berne
,
J. Chem. Phys.
110
,
5238
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.