Two types of anion states are shown to coexist in nanometer-scale polyacene cluster anions. Naphthalene and anthracene nanoclusters having a single excess electron were produced in the gas-phase. Photoelectron spectra of size-selected cluster anions containing 2 to 100 molecules revealed that rigid “crystal-like” cluster anions emerge, greater than ∼2 nanometers in size, and coexist with the “disordered” cluster anion in which the surrounding neutral molecules are reorganizing around the charge core. These two anion states appear to be correlated to negative polaronic states formed in the corresponding crystals.

1.
E. A. Silinsh, Organic molecular crystals: Their electronic states (Springer, Berlin, 1980), and references therein.
2.
E. A.
Silinsh
,
A.
Klimkāns
,
S.
Larsson
, and
V.
Čápek
,
Chem. Phys.
198
,
311
(
1995
).
3.
V.
Čápek
and
E. A.
Silinsh
,
Chem. Phys.
200
,
309
(
1995
).
4.
J. D. Wright, Molecular Crystals (Cambridge University Press, Cambridge, 1987).
5.
L. B.
Schein
,
C. B.
Duke
, and
A. R.
McGhie
,
Phys. Rev. Lett.
40
,
197
(
1978
).
6.
W.
Warta
and
N.
Karl
,
Phys. Rev. B
32
,
1172
(
1985
).
7.
V. M.
Kenkre
,
J. D.
Andersen
,
D. H.
Dunlap
, and
C. B.
Duke
,
Phys. Rev. Lett.
62
,
1165
(
1989
).
8.
N.
Karl
,
Synth. Met.
133
,
649
(
2003
).
9.
N.
Karl
,
J.
Marktanner
,
R.
Stehle
, and
W.
Warta
,
Synth. Met.
42
,
2473
(
2003
).
10.
S. F.
Nelson
,
Y.-Y.
Lin
,
D. J.
Gundlach
, and
T. N.
Jackson
,
Appl. Phys. Lett.
72
,
1854
(
1998
).
11.
L.
Torsi
,
A.
Dodabalapur
,
L. J.
Rothberg
,
A. W. P.
Fung
, and
H. E.
Katz
,
Science
272
,
1462
(
1996
).
12.
L.
Torsi
,
A.
Dodabalapur
,
L. J.
Rothberg
,
A. W. P.
Fung
, and
H. E.
Katz
,
Phys. Rev. B
57
,
2271
(
1998
).
13.
H.
Aziz
,
Z. D.
Popovic
,
N. X.
Hu
,
A. M.
Hor
, and
G.
Xu
,
Science
283
,
1900
(
1999
).
14.
W. A.
Schoonveld
,
J.
Wideman
,
D.
Fichou
,
P. A.
Bobbert
,
B. J.
van Wees
, and
T. M.
Klapwijk
,
Nature (London)
404
,
977
(
2000
).
15.
U.
Even
,
J.
Jortner
,
D.
Noy
,
N.
Lavie
, and
C.
Cossart-Magos
,
J. Chem. Phys.
112
,
8068
(
2000
).
16.
M.
Mitsui
,
A.
Nakajima
,
K.
Kaya
, and
U.
Even
,
J. Chem. Phys.
115
,
5707
(
2001
).
17.
M.
Mitsui
,
A.
Nakajima
, and
K.
Kaya
,
J. Chem. Phys.
117
,
9740
(
2002
).
18.
M.
Mitsui
,
N.
Ando
,
S.
Kokubo
,
A.
Nakajima
, and
K.
Kaya
,
Phys. Rev. Lett.
91
,
153002
(
2003
).
19.
A.
Nakajima
et al.,
Chem. Phys. Lett.
214
,
22
(
1993
).
20.
J. K.
Song
et al.,
J. Chem. Phys.
116
,
4477
(
2002
).
21.
J. K.
Song
,
N. K.
Lee
,
J. H.
Kim
,
S. Y.
Han
, and
S. K.
Kim
,
J. Chem. Phys.
119
,
3071
(
2003
).
22.
T.
Tsukuda
,
M. A.
Johnson
, and
T.
Nagata
,
Chem. Phys. Lett.
268
,
429
(
1997
).
23.
F. A.
Akin
and
C. C.
Jarrold
,
J. Chem. Phys.
118
,
1773
(
2003
).
24.
K. D.
Jordan
and
P. D.
Burrow
,
Chem. Rev.
87
,
557
(
1987
).
25.
J.
Schiedt
and
R.
Weinkauf
,
Chem. Phys. Lett.
266
,
201
(
1997
).
26.
I.
Eisenstein
and
R. W.
Munn
,
Chem. Phys.
77
,
47
(
1983
).
27.
I. V.
Brovchenko
,
Chem. Phys. Lett.
278
,
355
(
1997
).
28.
R. N.
Barnett
,
U.
Landmann
,
C. L.
Cleveland
, and
J.
Jortner
,
J. Chem. Phys.
88
,
4429
(
1988
).
29.
G.
Makov
and
A.
Nitzan
,
J. Phys. Chem.
98
,
3459
(
1994
).
30.
M. E.
Garcia
,
G. M.
Pastor
, and
K. H.
Bennemann
,
Phys. Rev. B
48
,
8388
(
1993
).
31.
B.
Bouvier
,
V.
Brenner
,
P.
Millié
, and
J. M.
Soudan
,
J. Phys. Chem. A
106
,
10326
(
2002
).
32.
N.
Ando
,
S.
Kokubo
,
M.
Mitsui
, and
A.
Nakajima
,
Chem. Phys. Lett.
389
,
279
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.