We study the dynamics of collapse of a polysoap by means of large-scale molecular dynamics simulation and scaling arguments. A polysoap consists of a hydrophilic backbone and hydrophobic side chains attached at regular intervals along the backbone. In selective solvent conditions, the hydrophobic components aggregate, forcing the hydrophilic backbone to form loops anchored at the surface of the core, ultimately forming a micelle. The kinetics of polysoap collapse includes two major mechanisms: (1) early aggregation of the hydrophobic side chains controlled by first-order kinetics whose rate constant is given by a contact probability and (2) coalescence into larger clusters which requires activation to overcome energy barriers due to excluded volume repulsions between intermediate micelle coronas. In the late stage, the energy barrier is increasing as p3/2, with p the number of aggregated side chains in an intermediate micelle. The corresponding late-stage rate constant decays exponentially as exp(−p3/2).

1.
P. G.
de Gennes
,
J. Phys. (France) Lett.
46
,
L639
(
1985
).
2.
A. Y.
Grosberg
and
D.
Kuznetsov
,
Macromolecules
26
,
4249
(
1993
).
3.
Y. A.
Kuznetsov
,
E.
Timoshenko
, and
K.
Dawson
,
J. Chem. Phys.
103
,
4807
(
1995
).
4.
A.
Buguin
,
F.
Brochard-Wyart
, and
P. G.
de Gennes
,
C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron.
322
,
741
(
1996
).
5.
V.
Rostiashivili
,
N.-K.
Lee
, and
T.
Vilgis
,
J. Chem. Phys.
118
,
937
(
2003
).
6.
R.
Chang
and
A.
Yethiraj
,
J. Chem. Phys.
114
,
7688
(
2001
).
7.
A.
Milchev
and
K.
Binder
,
Europhys. Lett.
26
,
671
(
1994
).
8.
E. G.
Timoshenko
,
Y. A.
Kuznetsov
, and
K. A.
Dawson
,
J. Chem. Phys.
102
,
1816
(
1995
).
9.
E.
Pitard
and
H.
Orland
,
Europhys. Lett.
41
,
467
(
1998
).
10.
B.
Chu
,
Q.
Ying
, and
A. Y.
Grosberg
,
Macromolecules
28
,
180
(
1995
).
11.
C.
Wu
and
S.
Zhou
,
Phys. Rev. Lett.
77
,
3053
(
1996
).
12.
C. F.
Abrams
,
N.-K.
Lee
, and
S.
Obukhov
,
Europhys. Lett.
59
,
391
(
2002
).
13.
S.
Hagen
,
J.
Hofrichter
,
A.
Szabo
, and
E. W. A.
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
11615
(
1996
).
14.
L.
Qiu
,
C.
Zachariah
, and
S. J.
Hagen
,
Phys. Rev. Lett.
90
,
168103
(
2003
).
15.
N.-K.
Lee
,
A.
Johner
, and
T. A.
Vilgis
,
Macromolecules
35
,
6043
(
2002
).
16.
O. V.
Borisov
and
A.
Halperin
,
Langmuir
11
,
2911
(
1995
).
17.
A.
Lashewki
,
Adv. Polym. Sci.
124
,
1
(
1995
).
18.
E. G.
Timoshenko
and
Y. A.
Kuznetsov
,
Colloids Surf., A
190
,
135
(
2001
).
19.
V. V.
Vasilevskaya
,
A. A.
Klochkov
,
P. G.
Khalatur
,
A. R.
Khokhlov
,
G.
ten Brinke
,
Macromol. Theory Simul.
10
,
389
(
2001
).
20.
I. R.
Cooke
and
D. R. M.
Williams
,
Macromolecules
36
,
2149
(
2003
).
21.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
116
,
7244
(
1971
).
22.
J.
Polson
and
M. J.
Zuckermann
,
J. Chem. Phys.
116
,
7244
(
2002
).
23.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
24.
C. F.
Abrams
and
K.
Kremer
,
J. Chem. Phys.
115
,
2776
(
2001
).
25.
M.
Pütz
and
A.
Kolb
,
Comput. Phys. Commun.
113
,
146
(
1998
).
26.
M.
Daoud
and
J. P.
Cotton
,
J. Phys. (Paris)
43
,
531
(
1982
).
27.
B.
Friedman
and
B.
O’Shaughnessy
,
Europhys. Lett.
21
,
779
(
1993
).
28.
B. O’Shaughnessy, in Theoretical and Mathematical Models in Polymer Research, edited by A. Y. Grosberg (Academic, San Diego, 1998).
29.
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
60
,
866
(
1974
).
30.
M.
Doi
,
J. Chem. Phys.
79
,
5080
(
1983
).
31.
In Rouse dynamics, the friction is instead proportional to the correlated contour length; hence, the diffusion coefficient decreases as D(t)∼1/t for subchains with length s(t)<s. The fluctuation of the mean-squared displacement is δR(t)∼t1/α with the kinetic exponent α=4. (Ref. 32). In this regime, the volume visited by the subchain is ∼t3/4<t in d=3, previously denoted as “compact exploration” by de Gennes (Ref. 32).
32.
P. G.
Gennes
,
J. Chem. Phys.
76
,
3316
(
1982
).
33.
In a good solvent, the field theoretic values using ε expansion report θ0=41/128,θ1=29/64,θ2=17/32. The trend is clear. As for the middle points, excluded volume effect reduces the probability to make contacts.
34.
The Daoud-Cotton model is restricted to true star geometries and presumably of order of 50 branches.
35.
A.
Johner
and
J.-F.
Joanny
,
Macromolecules
23
,
5299
(
1990
).
36.
B.
Duplantier
,
J. Stat. Phys.
54
,
581
(
1989
).
37.
J.
des Cloizeaux
,
Phys. Rev. A
10
,
1665
(
1974
).
38.
Strictly speaking the relevance of diffusive broadening through dynamic blobs is not obvious for the collapse of (large) strong stickers. If we follow Ref. 12, the streamlining process that aligns larger and larger chain sections under the effect of tension in a sense suppresses short scale fluctuations. On the other hand, the driving force is almost negligible for the few thermal blobs typically opened. Indeed the collapse time after Ref. 12 then merges with the relaxation time of thermal blob. This justifies the relevance of anomalous diffusion.
This content is only available via PDF.
You do not currently have access to this content.