The fluorescence recovery after photobleaching (FRAP) method and the fluorescence correlation spectroscopy (FCS) have been applied on suspensions of highly charged colloidal spheres with a small content of rod-shaped tobacco mosaic virus (TMV) particles. Since these methods only determine the self-diffusion coefficient of the fluorescently labeled species, DS of the rods and the spheres could independently be measured. The ionic strength of the dispersion medium has been varied to measure self-diffusion of rods and spheres in dependence on the degree of order of the matrix spheres. In contrast to FRAP, which allows the determination of the long-time self-diffusion coefficient DSL, FCS measures self-diffusion on a shorter time scale. Thus a comparison of the results that were obtained by FCS and FRAP, in combination with Brownian Dynamics simulations, gives insight into the time dependence of the self-diffusion coefficient of an interacting colloidal system. As the mean interparticle distance of the matrix is of the same order of magnitude as the length of a TMV rod, the rotational motion is influenced by the assembly of spheres around a TMV particle. Since FCS is sensitive both to translational and rotational motion, whereas FRAP, which probes the diffusion at much larger length scales, is only sensitive to the translational motion of TMV, the comparison of diffusion coefficients measured employing FRAP and FCS can give some insights in the rotational diffusion: the experimental data indicate a slowing down of the rotational motion of a TMV rod with increasing structural order of the matrix spheres.

1.
P. N. Pusey, in Liquids, Freezing and Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (Elsevier, Amsterdam, 1991).
2.
P. N.
Pusey
,
J. Phys. A
11
,
119
(
1978
).
3.
B.
Cichocki
and
B. U.
Felderhoff
,
Phys. Rev. A
44
,
6551
(
1991
).
4.
W.
Härtl
,
H.
Versmold
, and
X.
Zhang-Heider
,
Ber. Bunsenges. Phys. Chem.
95
,
1105
(
1991
).
5.
W.
van Megen
and
S. M.
Underwood
,
J. Chem. Phys.
91
,
552
(
1989
).
6.
J.
Wagner
,
W.
Härtl
, and
H.
Walderhaug
,
J. Chem. Phys.
114
,
975
(
2001
).
7.
A.
van Blaaderen
,
J.
Peetermans
,
G.
Maret
, and
J. K. G.
Dhont
,
J. Chem. Phys.
96
,
4591
(
1992
).
8.
W.
Härtl
,
J.
Wagner
,
Ch.
Beck
,
F.
Gierschner
, and
R.
Hempelmann
,
J. Phys.: Condens. Matter
12
,
A287
(
2000
).
9.
S.
Gorti
,
L.
Plank
, and
B. R.
Ware
,
J. Chem. Phys.
81
,
909
(
1984
).
10.
A.
Imhof
and
J. K. G.
Dhont
,
Colloids Surf., A
122
,
53
(
1997
).
11.
M. P. B.
Bruggen
,
H. N. W.
Lekkerkerker
,
G.
Maret
, and
J. K. G.
Dhont
,
Phys. Rev. E
58
,
7668
(
1998
).
12.
S. G. J. M.
Kluijtmans
,
G. H.
Koenderink
, and
A. P.
Philipse
,
Phys. Rev. E
61
,
626
(
2000
).
13.
G. H.
Koenderink
,
D. G. A. L.
Aarts
, and
A. P.
Philipse
,
J. Chem. Phys.
119
,
4490
(
2003
).
14.
J.
Davoust
,
P. F.
Devaux
, and
L.
Leger
,
EMBO J.
1
,
1233
(
1982
).
15.
W.
Hess
,
G.
Nägele
, and
A. Z.
Akcasu
,
J. Polym. Sci., Part B: Polym. Phys.
28
,
2233
(
1990
).
16.
D.
Magde
,
E. L.
Elson
, and
W. W.
Webb
,
Phys. Rev. Lett.
29
,
705
(
1972
).
17.
D.
Magde
,
E. L.
Elson
, and
W. W.
Webb
,
Biopolymers
13
,
29
(
1974
).
18.
R.
Rigler
,
U.
Mets
,
J.
Widengren
, and
P.
Kask
,
Eur. Biophys. J.
22
,
169
(
1993
).
19.
P.
Schwille
,
J.
Bieschke
, and
F.
Oehlenschlager
,
Biophys. Chem.
66
,
211
(
1997
).
20.
O.
Krichevsky
and
G.
Bonnet
,
Rep. Prog. Phys.
65
,
251
(
2002
).
21.
N. L.
Thompson
,
A. M.
Lieto
, and
N. W.
Allen
,
Curr. Opin. Struct. Biol.
12
,
634
(
2002
).
22.
S. T.
Hess
and
W. W.
Webb
,
Biophys. J.
83
,
2300
(
2002
).
23.
J.
Ricka
and
T.
Binkert
,
Phys. Rev. A
39
,
2646
(
1989
).
24.
T. Jankowski and R. Janka, Fluorescence Correlation Spectroscopy, edited by R. Rigler and E. S. Elson (Springer, Berlin, 2001).
25.
D. L.
Ermak
,
J. Chem. Phys.
62
,
4189
(
1975
).
26.
D. L.
Ermak
,
J. Chem. Phys.
62
,
4197
(
1975
).
27.
W.
Härtl
and
X.
Zhang-Heider
,
J. Colloid Interface Sci.
185
,
298
(
1997
).
28.
H.
Boedker
and
N.
Simmons
,
J. Am. Chem. Soc.
80
,
2550
(
1958
).
29.
Handbook of Fluorescent Probes and Research Products, 9th ed. (Molecular Probes, Eugene, Oregon, 1988), p. 6989.
30.
J.
Wilcoxon
and
J. M.
Schurr
,
Biopolymers
22
,
849
(
1983
).
31.
R.
Pecora
and
J. M.
Deutch
,
J. Chem. Phys.
83
,
4823
(
1985
).
32.
M.
Doi
and
S. F.
Edwards
,
J. Chem. Soc., Faraday Trans. 2
74
,
560
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.