Rate constants have been measured from 300 to 1400 K in a selected ion flow tube (SIFT) and a high temperature flowing afterglow for the reactions of N+,N2+ and N3+ with NO. In all of the systems, the rate constants are substantially less than the collision rate constant. Comparing the high temperature results to kinetics studies as a function of translational energy show that all types of energy (translational, rotational, and vibrational) affect the reactivity approximately equally for all three ions. Branching ratios have also been measured at 300 and 500 K in a SIFT for the N+ and N3+ reactions. An increase in the N2+ product at the expense of NO+ nondissociative charge transfer product occurs at 500 K with N+. The branching ratios for the reaction of N3+ with NO have also been measured in the SIFT, showing that only nondissociative charge transfer giving NO+ occurs up to 500 K. The current results are discussed in the context of the many previous studies of these ions in the literature.

1.
A. A. Viggiano and S. Williams, in Advances in Gas Phase Ion Chemistry, edited by N. G. Adams and L. M. Babcock (Academic Press, New York, 2001), Vol. 4, pp. 85–136.
2.
S. Williams, P. M. Bench, A. J. Midey, S. T. Arnold, A. A. Viggiano, R. A. Morris, L. Q. Maurice and C. D. Carter, in JANNAF, 25th Airbreathing Propulsion Meeting (Monterey, CA, 2000), Vol. 1, pp. 205–213.
3.
S. Williams, A. J. Midey, S. T. Arnold, et al., “Progress on the investigation of the effects of ionization on hydrocarbon/air combustion chemistry: kinetics and thermodynamics of C6-C10 hydrocarbon ions,” AIAA 2001–2873, 2001.
4.
A. A. Viggiano and F. Arnold, in Atmospheric Electrodynamics, edited by H. Volland (CRC, Boca Raton, 1995), Vol. 1, pp. 1–25.
5.
Handbook of Geophysics and the Space Environment, edited by A. S. Jursa (National Technical Information Service, Springfield VA, 1985).
6.
D.
Smith
and
P.
Spanel
,
Mass Spectrom. Rev.
14
,
255
(
1995
).
7.
T. C.
Wei
,
L. R.
Collins
, and
J.
Phillips
,
J. Phys. D
28
,
295
(
1995
).
8.
H. H.
Hwang
,
J. K.
Olthoff
,
R. J.
Van Brunt
,
S. B.
Radovanov
, and
M. J.
Kushner
,
J. Appl. Phys.
79
,
93
(
1996
).
9.
J.
Levaton
,
J.
Amorim
,
A. R.
Souza
,
D.
Franco
, and
A.
Ricard
,
J. Phys. D
35
,
689
(
2002
).
10.
N.
Kobayashi
and
Y.
Kaneko
,
J. Phys. Soc. Jpn.
37
,
1082
(
1974
).
11.
R. G.
Kosmider
and
J. B.
Hasted
,
J. Phys. B
8
,
273
(
1975
).
12.
D. W.
Fahey
,
I.
Dotan
,
F. C.
Fehsenfeld
,
D. L.
Albritton
, and
L. A.
Viehland
,
J. Chem. Phys.
74
,
3320
(
1981
).
13.
W.
Dobler
,
H.
Ramler
,
H.
Villinger
,
F.
Howorka
, and
W.
Lindinger
,
Chem. Phys. Lett.
97
,
553
(
1983
).
14.
F. Howorka, D. L. Albritton, and F. C. Fehsenfeld, 1980.
15.
W.
Lindinger
,
J. Chem. Phys.
64
,
3720
(
1976
).
16.
V. G.
Anicich
,
W. T.
Huntress
, Jr.
, and
J. H.
Futrell
,
Chem. Phys. Lett.
47
,
488
(
1977
).
17.
M.
Tichy
,
A. B.
Rakshit
,
D. G.
Lister
,
N. D.
Twiddy
,
N. G.
Adams
, and
D.
Smith
,
Int. J. Mass Spectrom. Ion Phys.
29
,
231
(
1979
).
18.
N. G.
Adams
,
D.
Smith
, and
J. F.
Paulson
,
J. Chem. Phys.
72
,
288
(
1980
).
19.
A. A.
Viggiano
,
R. A.
Morris
,
F.
Dale
,
J. F.
Paulson
,
K.
Giles
,
D.
Smith
, and
T.
Su
,
J. Chem. Phys.
93
,
1149
(
1990
).
20.
P. M.
Hierl
,
J. F.
Friedman
,
T. M.
Miller
et al.,
Rev. Sci. Instrum.
67
,
2142
(
1996
).
21.
A. J.
Midey
,
S.
Williams
,
S. T.
Arnold
, and
A. A.
Viggiano
,
J. Phys. Chem. A
106
,
11726
(
2002
).
22.
S. T.
Arnold
,
S.
Williams
,
I.
Dotan
,
A. J.
Midey
,
R. A.
Morris
, and
A. A.
Viggiano
,
J. Phys. Chem. A
103
,
8421
(
1999
).
23.
P. D.
Goldan
,
A. L.
Schmeltekopf
,
F. C.
Fehsenfeld
,
H. I.
Schiff
, and
E. E.
Ferguson
,
J. Chem. Phys.
44
,
4095
(
1966
).
24.
F. C.
Fehsenfeld
,
A. L.
Schmeltekopf
, and
E. E.
Ferguson
,
J. Chem. Phys.
46
,
2019
(
1967
).
25.
B. R.
Turner
,
J. A.
Rutherford
, and
R. F.
Stebbings
,
J. Geophys. Res.
71
,
4521
(
1966
).
26.
S.
Matsuoka
,
H.
Nakamura
,
T.
Fujii
, and
T.
Tamura
,
Mass Spectrosc. (Tokyo)
32
,
253
(
1984
).
27.
J. A.
Rutherford
and
D. A.
Vroom
,
J. Chem. Phys.
64
,
1251
(
1976
).
28.
T.
Su
and
W. J.
Chesnavich
,
J. Chem. Phys.
76
,
5183
(
1982
).
29.
T.
Su
,
J. Chem. Phys.
89
,
5355
(
1988
).
30.
A. A.
Viggiano
,
W. B.
Knighton
,
S.
Williams
,
S. T.
Arnold
,
A. J.
Midey
, and
I.
Dotan
,
Int. J. Mass. Spectrom.
223–224
,
397
(
2003
).
31.
S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by W. G. Mallard and P. J. Linstrom (NIST, Gaithersburg, 1998);
(http://webbook.nist.gov).
32.
A. A. Radzig and B. M. Smirnov, in Reference Data on Atoms, Molecules, and Ions, edited by J. P. Toennies (Springer-Verlag, Berlin, 1985), Vol. 31, pp. 259–260.
33.
A. A.
Viggiano
and
R. A.
Morris
,
J. Phys. Chem.
100
,
19227
(
1996
).
34.
P.
Warneck
,
J. Geophys. Res.
72
,
1651
(
1967
).
35.
F. C.
Fehsenfeld
,
D. B.
Dunkin
, and
E. E.
Ferguson
,
Planet. Space Sci.
18
,
1267
(
1970
).
36.
J. W.
Dreyer
and
D.
Pemer
,
Chem. Phys. Lett.
12
,
299
(
1971
).
37.
M. A.
French
,
L. P.
Hills
, and
P.
Kebarle
,
Can. J. Chem.
51
,
456
(
1973
).
38.
W.
Dobler
,
H.
Villinger
,
F.
Howorka
, and
W.
Lindinger
,
Int. J. Mass Spectrom. Ion Phys.
47
,
171
(
1983
).
39.
D. C.
Parent
,
R.
Derai
,
G.
Mauclaire
,
M.
Heninger
,
R.
Marx
,
M. E.
Rincon
,
A.
O’Keefe
, and
M. T.
Bowers
,
Chem. Phys. Lett.
117
,
127
(
1985
).
40.
E. E.
Ferguson
,
J. Phys. Chem.
90
,
731
(
1986
).
41.
E. E.
Ferguson
,
R.
Richter
, and
W.
Lindinger
,
J. Chem. Phys.
89
,
1445
(
1988
).
42.
S. T.
Graul
,
S.
Williams
,
R. A.
Dressler
,
R. H.
Salter
, and
E.
Murad
,
J. Chem. Phys.
100
,
7348
(
1994
).
43.
M. J.
Frost
,
S.
Kato
,
V. M.
Bierbaum
, and
S. R.
Leone
,
Chem. Phys.
231
,
145
(
1998
).
44.
D. Smith and N. G. Adams, in Gas Phase Ion Chemistry, edited by M. T. Bowers (Academic, New York, 1979), Vol. 1, p. 1.
45.
I.
Dotan
,
F. C.
Fehsenfeld
, and
D. L.
Albritton
,
J. Chem. Phys.
71
,
3280
(
1979
).
46.
D. L.
Albritton
,
I.
Dotan
,
W.
Lindinger
,
M.
McFarland
,
J.
Tellinghuisen
, and
F. C.
Fehsenfeld
,
J. Chem. Phys.
66
,
410
(
1977
).
47.
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
J. Chem. Phys.
93
,
4485
(
1990
).
48.
R. E.
Continetti
,
D. R.
Cyr
,
D. L.
Osborn
,
D. J.
Leahy
, and
D. M.
Neumark
,
J. Chem. Phys.
99
,
2616
(
1993
).
49.
D. A.
Dixon
,
D.
Feller
,
K. O.
Christe
et al.,
J. Am. Chem. Soc.
126
,
834
(
2004
).
50.
R. W.
Field
,
J. Mol. Spectrosc.
47
,
194
(
1973
).
51.
D. L.
Albritton
,
A. L.
Schmeltekopf
, and
R. N.
Zare
,
J. Chem. Phys.
71
,
3271
(
1979
).
52.
D. G.
Hopper
,
J. Am. Chem. Soc.
100
,
1019
(
1978
).
53.
N.
Komiha
,
J. Mol. Struct.: THEOCHEM
306
,
313
(
1994
).
54.
I.
Nenner
,
P.-M.
Guyon
,
T.
Baer
, and
T. R.
Govers
,
J. Chem. Phys.
72
,
6587
(
1980
).
55.
M.
Richard-Viard
,
O.
Atabek
,
O.
Dutuit
, and
P.-M.
Guyon
,
J. Chem. Phys.
93
,
8881
(
1990
).
56.
J. A.
Beswick
and
M.
Horani
,
Chem. Phys. Lett.
78
,
4
(
1981
).
57.
D. G.
Hopper
,
J. Chem. Phys.
76
,
1068
(
1982
).
58.
R. A.
Dressler
,
D. J.
Levandier
,
S.
Williams
, and
E.
Murad
,
Comments At. Mol. Phys.
34
,
43
(
1998
).
59.
P. Zhang, K. Morokuma, and A. M. Wodtke, J. Chem. Phys. (to be published).
60.
M.
Bitterova
,
H.
Ostmark
, and
T.
Brinck
,
J. Chem. Phys.
116
,
9740
(
2002
).
61.
P. M.
Hierl
,
I.
Dotan
,
J. V.
Seeley
,
J. M.
Van Doren
,
R. A.
Morris
, and
A. A.
Viggiano
,
J. Chem. Phys.
106
,
3540
(
1997
).
62.
I.
Dotan
,
P. M.
Hierl
,
R. A.
Morris
, and
A. A.
Viggiano
,
Int. J. Mass Spectrom. Ion Phys.
167/168
,
223
(
1997
).
63.
A. J.
Midey
and
A. A.
Viggiano
,
J. Chem. Phys.
109
,
5257
(
1998
).
64.
I.
Dotan
and
A. A.
Viggiano
,
J. Chem. Phys.
110
,
4730
(
1999
).
65.
A. J.
Midey
and
A. A.
Viggiano
,
J. Chem. Phys.
110
,
10746
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.