The relationship of the microstructure of supercooled, highly viscous glycerol to the temperature dependence of its density, thermal expansion coefficient, and shear viscosity are discussed. The character of this temperature dependence at the transition from low viscosity state to the solid amorphous state (solidified state without nuclei) is described with help of function ψ, which can be interpreted as the effective number of degrees of freedom responsible for the change of viscosity of glycerol over a broad range; these degrees of freedom are those related to the α-relaxation process. It is shown that the change in effective activation energy of the viscosity is completely determined by the parameter ψ. The change in the shear viscosity of glycerol due to the influence of the solid-phase nuclei is considered. It is shown that the introduction of the parameter φ, equal to the specific volume occupied by the nuclei of the solid phase, together with ψ provides a natural explanation of the temperature dependence of density and thermal expansion coefficients of glycerol in its liquid, solid amorphous, glassy, and crystal states. The peculiarities of the temperature dependence of φ(T) and ψ(T) for glycerol and o-terphenyl are compared.

1.
E. W.
Fischer
,
G.
Meier
,
T.
Rabenau
,
A.
Patkowski
,
W.
Steffen
, and
W.
Thonnes
,
J. Non-Cryst. Solids
131
,
134
(
1991
).
2.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Phys. Rev. Lett.
66
,
3020
(
1991
).
3.
I.
Chang
,
F.
Fujara
,
B.
Geil
,
G.
Heuberger
,
T.
Mangel
, and
H.
Sillescu
,
J. Non-Cryst. Solids
172
,
248
(
1994
).
4.
M. T.
Cicerone
,
F. R.
Blackburn
, and
M. D.
Ediger
,
J. Chem. Phys.
102
,
471
(
1995
).
5.
B.
Schiener
,
R.
Bohmer
,
A.
Loidl
, and
R. W.
Chamberlin
,
Science
274
,
752
(
1996
).
6.
R.
Ricnert
,
J. Phys. Chem. B
101
,
6323
(
1997
).
7.
C. Y.
Wang
and
M. D.
Ediger
,
J. Phys. Chem. B
103
,
4177
(
1999
).
8.
E. R.
Weeks
,
J. C.
Crocker
,
A. C.
Levitt
,
A.
Schofield
, and
D. A.
Weitz
,
Science
287
,
627
(
2000
).
9.
M. A.
Kozlova
and
V. V.
Korneev
,
Fiz. Khim. Stekla
10
,
471
(
1984
).
10.
E. W.
Fischer
,
Physica A
201
,
183
(
1993
).
11.
I. V.
Blazhnov
and
N. P.
Malomuzh
,
Proc. SPIE
4938
,
1
(
2002
).
12.
I. V.
Blazhnov
and
N. P.
Malomuzh
,
Opt. Spektrosk.
96
,
650
(
2004
).
13.
I.
Avramov
and
A.
Milchev
,
J. Non-Cryst. Solids
104
,
253
(
1988
).
14.
N. P.
Malomuzh
and
S. B.
Pelishenko
,
Phys. Lett. A
154
,
269
(
1991
).
15.
L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980).
16.
M. Volmer, Kinetik der Phasenbildung (Th. Steinkopff, Dresden, 1939).
17.
O. V. Mazurin, Vitrification (Nauka, Leningrad, 1986).
18.
A. R. Ubbelohde, Melting and Crystal Structure (Clarendon, Oxford, 1965).
19.
M. H.
Cohen
and
G. S.
Grest
,
Phys. Rev. B
20
,
1077
(
1979
).
20.
S. V.
Lishchuk
and
N. P.
Malomuzh
,
J. Chem. Phys.
106
,
6160
(
1997
).
21.
H. N.
Ritland
,
J. Am. Ceram. Soc.
37
,
370
(
1954
).
22.
R.
Consiglio
,
D. R.
Baker
,
G.
Paul
, and
H. E.
Stanley
,
Physica A
319
,
49
(
2003
).
23.
R. Verberg, Ph.D. thesis, Delft, The Netherlands, 1998.
24.
H.
Jorquera
and
J.
Dahler
,
J. Chem. Phys.
101
,
1392
(
1994
).
25.
N. P.
Malomuzh
and
E. V.
Orlov
,
Colloid J.
64
,
725
(
2002
).
26.
T. S.
Chow
,
Phys. Rev. E
48
,
1977
(
1993
).
27.
J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955).
28.
H.
Eyring
,
J. Chem. Phys.
4
,
283
(
1936
).
29.
K.
Schröter
and
E.
Donth
,
J. Chem. Phys.
113
,
9101
(
2000
).
30.
C. A.
Angell
,
Science
267
,
1924
(
1995
).
31.
W. T.
Laughlin
and
D. R.
Uhlmann
,
J. Phys. Chem.
76
,
2317
(
1972
).
32.
I.
Avramov
,
J. Non-Cryst. Solids
238
,
6
(
1998
).
33.
I.
Avramov
,
J. Chem. Phys.
95
,
4439
(
1991
).
34.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
35.
V. P.
Slyusar
,
N. S.
Rudenko
, and
V. M.
Tretyakov
,
Ukr. Phys. J.
18
,
190
(
1973
).
36.
V. P.
Slyusar
,
Ukr. Phys. J.
17
,
529
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.