We study the nitrogen binding curve with the density matrix renormalization group (DMRG) and single-reference and multireference coupled cluster (CC) theory. Our DMRG calculations use up to 4000 states and our single-reference CC calculations include up to full connected hextuple excitations. Using the DMRG, we compute an all-electron benchmark nitrogen binding curve, at the polarized, valence double-zeta level (28 basis functions), with an estimated accuracy of 0.03 mEh. We also assess the performance of more approximate DMRG and CC theories across the nitrogen curve. We provide an analysis of the relative strengths and merits of the DMRG and CC theory under different correlation conditions.

1.
J. W.
Krogh
and
J.
Olsen
,
Chem. Phys. Lett.
344
,
578
(
2001
).
2.
W. D.
Laidig
,
P.
Saxe
, and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
887
(
1987
).
3.
S. R.
Gwaltney
,
E. F. C.
Byrd
,
T. V.
Voorhis
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
353
,
359
(
2002
).
4.
X.
Li
and
J.
Paldus
,
Chem. Phys. Lett.
286
,
145
(
1998
).
5.
S. A.
Kucharski
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
302
,
295
(
1999
).
6.
H.
Larsen
,
J.
Olsen
,
P.
Jørgensen
, and
O.
Christiansen
,
J. Chem. Phys.
113
,
6677
(
2000
).
7.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1989
).
8.
S. R.
White
,
Phys. Rev. Lett.
69
,
2863
(
1992
).
9.
S. R.
White
,
Phys. Rev. B
48
,
10345
(
1993
).
10.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
(
1999
).
11.
A. O.
Mitrushenkov
,
G.
Fano
,
F.
Ortolani
,
R.
Linguerri
, and
P.
Palmieri
,
J. Chem. Phys.
115
,
6815
(
2001
).
12.
G. K.-L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
116
,
4462
(
2002
).
13.
G. K.-L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
118
,
8551
(
2003
).
14.
G. K.-L.
Chan
,
J. Chem. Phys.
120
,
3172
(
2004
).
15.
Ö.
Legeza
,
J.
Roder
, and
B. A.
Hess
,
Mol. Phys.
101
,
2019
(
2003
).
16.
The factor of 4 arises from the contribution of the Fock space of the orbital that is being added to the growing block.
17.
A. O.
Mitrushenkov
,
R.
Linguerri
,
P.
Palmieri
, and
G.
Fano
,
J. Chem. Phys.
119
,
4148
(
2003
).
18.
Ö.
Legeza
and
J.
Sólyom
,
Phys. Rev. B
68
,
195116
(
2003
).
19.
Antisymmetrization follows from the second-quantized operators used in the DMRG.
20.
J. Gauss, in Encyclopedia of Computational Chemistry, edited by P. R. Schleyer, W. L. Jorgensen, H. F. Schaefer, III, P. R. Schreiner, and W. Thiel (Wiley, New York, 1998), p. 615.
21.
T.
Crawford
and
H.
Schaefer
,
Rev. Comp. Chem.
14
,
33
(
2000
).
22.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
113
,
1359
(
2000
).
23.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
24.
S.
Hirata
and
R. J.
Bartlett
,
Chem. Phys. Lett.
321
,
216
(
2000
).
25.
J.
Olsen
,
J. Chem. Phys.
113
,
7140
(
2000
).
26.
S.
Hirata
,
J. Chem. Phys.
107
,
9887
(
2003
).
27.
M.
Kállay
,
P. G.
Szalay
, and
P. R.
Surján
,
J. Chem. Phys.
117
,
980
(
2002
).
28.
N.
Oliphant
and
L.
Adamowicz
,
J. Chem. Phys.
96
,
3739
(
1992
).
29.
J.
Paldus
and
X.
Li
,
Adv. Chem. Phys.
110
,
1
(
1999
).
30.
R. D. Amos, A. Bernhardsson, A. Berning et al., MOLPRO, a package of ab initio programs designed by H.-J. Werner and P. J. Knowles, release 2002.1 (2002).
31.
The small matrix sizes associated with higher symmetry groups led to memory fragmentation and loss of performance when running our code for extended periods. This is a feature of the dynamic memory allocation routine and not of our algorithm.
32.
J.
Stanton
,
J.
Gauss
,
J.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
S26
,
879
(
1992
).
33.
H. Lischka, R. Shepard, I. Shavitt et al., Columbus, an ab initio electronic structure program, release 5.9 (2001).
34.
P.
Pulay
,
Chem. Phys. Lett.
73
,
393
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.