The centroid molecular dynamics (CMD) method is applied to the study of liquid water in the context of the rigid-body approximation. This rigid-body CMD technique, which is significantly more efficient than the standard CMD method, is implemented on the TIP4P model for water and used to examine isotopic effects in the equilibrium and dynamical properties of liquid and The results obtained with this approach compare remarkably well with those determined previously with path integrals simulations as well as those obtained from the standard CMD method employing flexible models. In addition, an examination of the impact of quantization on the rotational and librational motion of the water molecule is also reported.
REFERENCES
1.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965);
R. P. Feynman, Statistical Mechanics: A Set of Lectures (Addison-Wesley, Redwood City, CA, 1972).
2.
B. J.
Berne
and D.
Thirumalai
, Annu. Rev. Phys. Chem.
37
, 401
(1986
);D. Chandler, in Liquids, Freezing and Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (Norh-Holland, Amsterdan, 1991).
3.
4.
5.
G. S.
del Buono
, P. J.
Rossky
, and J.
Schnitker
, J. Chem. Phys.
95
, 3728
(1991
).6.
7.
8.
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981), p. 331.
9.
W. L.
Jorgensen
, J.
Chandrasekhar
, J. D.
Madura
, R. W.
Impey
, and M. L.
Klein
, J. Chem. Phys.
79
, 926
(1983
).10.
B.
Chen
, I.
Ivanov
, M. L.
Klein
, and M.
Parrinello
, Phys. Rev. Lett.
91
, 215503
(2003
).11.
G. Voth, in Advances in Chemical Physics, Vol. XCIII, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1996);
G. A. Voth, in Theoretical Methods in Condensed Phase Chemistry, edited by S. D. Schwartz (Kluwer Academic, Amsterdam, 2000).
12.
13.
14.
A. Wallqvist and R. D. Mountain, in Reviews in Computational Chemistry, Vol. 13, edited by K. B. Lipkowitz and D. B. Boyd (Wiley, New York, 1999);
15.
M.
Allesch
, E.
Schwegler
, F.
Gygi
, and G.
Galli
, J. Chem. Phys.
120
, 5192
(2004
).16.
17.
18.
L. Hernández de la Peña and P. G. Kusalik, Mol. Phys. (to be published).
19.
For a review on the use of path integrals in rigid rotors, see
D. Marx
and M. H.
Müser
, J. Phys.: Condens. Matter
11
, R117
(1999
).20.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
21.
22.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989).
23.
24.
25.
M.
Pavese
, S.
Jang
, and G. A.
Voth
, Parallel Comput.
26
, 1025
(2000
).26.
27.
M.
Mizoguchi
, Y.
Hori
, and Y.
Tominaga
, J. Chem. Phys.
97
, 1961
(1992
).28.
I. M.
Svishchev
and P. G.
Kusalik
, J. Chem. Soc., Faraday Trans.
90
, 1405
(1994
).29.
L. Hernández de la Peña and P. G. Kusalik (unpublished).
30.
L. Hernández de la Peña and P. G. Kusalik (unpublished).
31.
L. Hernández de la Peña, M. S. Gulam Razul, and P. G. Kusalik (unpublished).
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.