We investigate the vibronic and spin-orbit (SO) coupling effects in the state-selected dynamics of the title reaction with the aid of a time-dependent wave packet approach. The ab initio potential energy surfaces of Capecchi and Werner [Science 296, 715 (2002)] have been employed for this purpose. Collinear approach of the Cl(2P) atom to the H2 molecule splits the degeneracy of the P2 state and gives rise to Σ2 and Π2 electronic states. These two surfaces form a conical intersection at this geometry. These states transform as 1 2A,1 2A, and 2 2A, respectively, at the nonlinear configurations of the nuclei. In addition, the SO interaction due to Cl atom further splits these states into 2Σ1/2, 2Π3/2, and 2Π1/2 components at the linear geometry. The ground-state reagent Cl(2P3/2)+H2 correlates with 2Σ1/2 and 2Π3/2, where as the SO excited reagent Cl*(2P1/2)+H2 correlates with 2Π1/2 at the linear geometry. In order to elucidate the impact of the vibronic and SO coupling effects on the initial state-selected reactivity of these electronic states we carry out quantum scattering calculations based on a flux operator formalism and a time-dependent wave packet approach. In this work, total reaction probabilities and the time dependence of electronic population of the system by initiating the reaction on each of the above electronic states are presented. The role of conical intersection alone on the reaction dynamics is investigated with a coupled two-state model and for the total angular momentum J=0 (neglecting the electronic orbital angular momentum) both in a diabatic as well as in the adiabatic electronic representation. The SO interaction is then included and the dynamics is studied with a coupled three-state model comprising six diabatic surfaces for the total angular momentum J=0.5 neglecting the Coriolis Coupling terms of the Hamiltonian. Companion calculations are carried out for the uncoupled adiabatic and diabatic surfaces in order to explicitly reveal the impact of two different surface coupling mechanisms in the dynamics of this prototypical reaction.

1.
K.
Liu
,
Annu. Rev. Phys. Chem.
52
,
139
(
2001
);
K.
Liu
,
Int. Rev. Phys. Chem.
20
,
189
(
2001
).
2.
S.-H.
Lee
and
K.
Liu
,
J. Chem. Phys.
111
,
6253
(
1999
);
S.-H.
Lee
,
L.-H.
Lai
,
K.
Liu
, and
H.
Chang
,
J. Chem. Phys.
110
,
8229
(
1999
);
F.
Dong
,
S.-H.
Lee
, and
K.
Liu
,
J. Chem. Phys.
115
,
1197
(
2001
).
3.
S. A.
Nizkorodov
,
W. W.
Harper
,
W. B.
Chapman
,
W. B.
Blackmon
, and
D. J.
Nesbitt
,
J. Chem. Phys.
111
,
8404
(
1999
);
S. A.
Nizkorodov
,
W. W.
Harper
, and
D. J.
Nesbitt
,
Faraday Discuss.
113
,
107
(
1999
);
W. W.
Harper
,
S. A.
Nizkorodov
, and
D. J.
Nesbitt
,
J. Chem. Phys.
116
,
5622
(
2002
).
4.
F.
Ausfelder
,
H.
Kelso
, and
K. G.
Mckendrick
,
Phys. Chem. Chem. Phys.
4
,
473
(
2002
);
F.
Ausfelder
and
K. G.
Mckendrick
,
Prog. React. Kinet.
25
,
299
(
2000
);
M.
Brouard
,
P.
O’keffe
, and
C.
Vallance
,
J. Phys. Chem. A
106
,
3629
(
2002
);
M.
Brouard
and
C.
Vallance
,
Phys. Chem. Chem. Phys.
3
,
3602
(
2001
);
A. I.
Chichinin
,
J. Chem. Phys.
112
,
3772
(
2000
).
5.
J. C.
Tully
,
J. Phys. Chem.
60
,
3042
(
1974
).
6.
G. C.
Schatz
,
J. Chem. Phys.
99
,
7522
(
1995
).
7.
M. H.
Alexander
,
H.-J.
Werner
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
109
,
5710
(
1998
);
M. H.
Alexander
,
H.-J.
Werner
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
113
,
11084
(
2000
).
8.
M. H.
Alexander
,
G.
Chapecchi
, and
H.-J.
Werner
,
Science
296
,
715
(
2002
).
9.
N.
Balucani
,
D.
Skouteris
,
L.
Cartechini
,
Phys. Rev. Lett.
91
,
013201
(
2003
).
10.
F. J.
Aoiz
,
L.
Bañares
, and
J. F.
Castillo
,
J. Chem. Phys.
111
,
4013
(
1999
);
V.
Aquilanti
,
S.
Cavalli
,
D.
De Fazio
,
A.
Volpi
,
A.
Aguilar
,
X.
Gimeénez
, and
J. M.
Lucas
,
Phys. Chem. Chem. Phys.
4
,
401
(
2002
);
V.
Aquilanti
,
S.
Cavalli
,
F.
Pirani
,
A.
Volpi
, and
C.
Cappelletti
,
J. Phys. Chem. A
105
,
2401
(
2001
).
11.
S. K.
Gray
,
C.
Petrongolo
,
K.
Drukker
, and
G. C.
Schatz
,
J. Phys. Chem. A
103
,
9448
(
1999
);
K.
Drukker
and
G. C.
Schatz
,
J. Chem. Phys.
111
,
2451
(
1999
);
S. K.
Gray
,
G. G.
Balint-Kurti
,
G. C.
Schatz
,
J. J.
Lin
,
X.
Liu
,
S.
Harich
, and
X.
Yang
,
J. Chem. Phys.
113
,
7330
(
2000
).
12.
G. C.
Schatz
,
P.
McCabe
, and
J. N. L.
Connor
,
Faraday Discuss.
110
,
139
(
1998
);
T. W. J.
Whiteley
,
A. J.
Dobbyn
,
J. N. L.
Connor
, and
G. C.
Schatz
,
Phys. Chem. Chem. Phys.
2
,
549
(
2000
);
G. C.
Schatz
,
M.
Hankel
,
T. W. J.
Whiteley
, and
J. N. L.
Connor
,
J. Phys. Chem. A
107
,
7278
(
2003
).
13.
S.
Mahapatra
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Phys. Chem. A
105
,
2321
(
2001
);
S. Mahapatra, in Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2004), pp. 545–571.
14.
Y.
Zhang
,
T.-X.
Xie
,
K.-L.
Han
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
119
,
12921
(
2003
).
15.
R. E.
Weston
, Jr.
,
J. Phys. Chem.
83
,
61
(
1979
).
16.
A.
Wheeler
,
B.
Topley
, and
H.
Eyring
,
J. Chem. Phys.
4
,
178
(
1936
).
17.
J.
Bigeleisen
,
F. S.
Klein
,
R. E.
Weston
, and
M.
Wolfsberg
,
J. Chem. Phys.
30
,
1340
(
1959
).
18.
C. A.
Taatjes
,
Chem. Phys. Lett.
306
,
33
(
1999
).
19.
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
et al.,
Phys. Chem. Chem. Phys.
2
,
599
(
2000
).
20.
S. A.
Kandel
,
A. J.
Alexander
,
Z. H.
Kim
,
R. N.
Zare
,
F. J.
Aoiz
,
L.
Bañares
,
J. F.
Castillo
, and
V.
Sáez Rábanos
,
J. Chem. Phys.
112
,
670
(
2000
).
21.
D.
Skouteris
,
D. E.
Manolopoulos
,
W.
Bian
,
H.-J.
Werner
,
L.-H.
Lai
, and
K.
Liu
,
Science
286
,
1713
(
1999
).
22.
A.
Wheeler
,
B.
Topley
, and
H.
Eyring
,
J. Chem. Phys.
4
,
178
(
1936
);
S.
Sato
,
J. Chem. Phys.
23
,
2465
(
1955
);
C. A.
Parr
and
D. G.
Truhlar
,
J. Phys. Chem.
75
,
1844
(
1971
), and references therein;
M. J.
Stern
,
A.
Persky
, and
F. S.
Klein
,
J. Chem. Phys.
58
,
5697
(
1973
);
M. J.
Stern
,
A.
Persky
, and
F. S.
Klein
,
Chem. Phys. Lett.
121
,
475
(
1985
);
B. C.
Garrett
,
D. G.
Truhlar
, and
A. W.
Magnuson
,
J. Chem. Phys.
74
,
1029
(
1981
);
I.
Last
and
M.
Bear
,
J. Chem. Phys.
75
,
288
(
1981
).
23.
S. C.
Truker
,
D. G.
Truhlar
,
B. C.
Garrett
, and
A. D.
Isaacson
,
J. Chem. Phys.
82
,
4102
(
1985
).
24.
D. W.
Schwenke
,
S. C.
Tucker
,
R.
Steckler
,
F. B.
Brown
,
G. C.
Lynch
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Chem. Phys.
90
,
3110
(
1989
).
25.
T. C.
Allison
,
G. C.
Lynch
,
D. G.
Truhlar
, and
M. S.
Gordon
,
J. Phys. Chem.
100
,
13575
(
1996
);
S. L.
Mielke
,
T. C.
Allison
,
D. G.
Truhlar
, and
D. W.
Schwenke
,
J. Phys. Chem.
100
,
13588
(
1996
).
26.
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
et al.,
Science
273
,
1519
(
1996
).
27.
W.
Bian
and
H.-J.
Werner
,
J. Chem. Phys.
112
,
220
(
2000
).
28.
W.
Lichten
,
Phys. Rev.
164
,
131
(
1967
);
F. T.
Smith
,
Phys. Rev.
179
,
111
(
1969
);
T. F.
O’Malley
,
Adv. At. Mol. Phys.
7
,
223
(
1971
);
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
Adv. Chem. Phys.
84
,
293
(
1993
).
29.
T. J.
Park
and
J. C.
Light
,
J. Chem. Phys.
88
,
4897
(
1988
);
W. H.
Miller
,
J. Phys. Chem.
102
,
793
(
1998
), and references therein.
30.
R.
Kosloff
,
J. Phys. Chem.
92
,
2087
(
1988
);
N.
Balakrishnan
,
C.
Kalyanaraman
, and
N.
Satyamurthy
,
Phys. Rep.
280
,
79
(
1997
), and references therein;
G.
Nyman
and
H.-G.
Yu
,
Rep. Prog. Phys.
63
,
1001
(
2000
);
J. Z. H. Zhang, in Theory and Application of Quantum Molecular Dynamics (World Scientific, Singapore, 1999).
31.
D.
Neuhauser
and
M.
Baer
,
J. Chem. Phys.
91
,
4651
(
1989
);
D.
Neuhauser
,
M.
Baer
,
R. S.
Judson
, and
D. J.
Kouri
,
J. Chem. Phys.
93
,
312
(
1990
).
32.
F.
Rebentrost
and
W. A.
Lester
,Jr.
,
J. Chem. Phys.
63
,
3737
(
1975
);
F.
Rebentrost
and
W. A.
Lester
,Jr.
,
J. Chem. Phys.
64
,
3879
(
1976
);
F.
Rebentrost
and
W. A.
Lester
, Jr.
,
J. Chem. Phys.
64
,
4223
(
1977
).
33.
U.
Manthe
and
H.
Köppel
,
J. Chem. Phys.
93
,
345
(
1990
).
34.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1954).
35.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
36.
M. D.
Feit
,
J. A.
Fleck
, Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
37.
E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970).
38.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
39.
Z.
Bačić
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
);
G. C.
Corey
and
D.
Lemoine
,
J. Chem. Phys.
97
,
4115
(
1992
);
A. R.
Offer
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
101
,
10416
(
1994
).
40.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vatterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).
41.
S.
Mahapatra
and
N.
Satyamurthy
,
J. Chem. Soc., Faraday Trans.
93
,
773
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.