As ab initio electronic structure calculations become more accurate, inherent sources of error in classical transition state theory such as barrier recrossing and tunneling may become major sources of error in calculating rate constants. This paper introduces a general method for diabatically constructing the transverse eigensystem of a reaction path Hamiltonian in systems with many degenerate transverse frequencies. The diabatically constructed reaction path Hamiltonian yields smoothly varying coupling constants that, in turn, facilitate reactive flux calculations. As an example we compute the dynamically corrected rate constant for the chair to boat interconversion of cyclohexane, a system with 48 degrees of freedom and a number of degenerate frequencies. The transmission coefficients obtained from the reactive flux simulations agree with previous results that have been calculated using an empirical potential. Furthermore, the calculated rate constants agree with experimental values. Comparison to variational transition state theory shows that, despite finding the true bottleneck along the reaction pathway, variational transition state theory only accounts for half of the rate constant reduction due to recrossing trajectories.

1.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, Mineola, NY, 1996).
2.
M.
Head-Gordon
,
J. Phys. Chem.
100
,
13213
(
1996
).
3.
F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 1999).
4.
T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Structure Theory (Wiley, Sussex, England, 2000).
5.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
6.
T.
Vreven
and
K.
Morokuma
,
J. Comput. Chem.
21
,
1419
(
2000
).
7.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
8.
M. G.
Evans
and
M.
Polanyi
,
Trans. Faraday Soc.
31
,
875
(
1935
).
9.
P.
Hanggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
10.
D. G.
Truhlar
,
W. L.
Hase
, and
J. T.
Hynes
,
J. Phys. Chem.
87
,
2664
(
1983
).
11.
D. G.
Truhlar
,
B. C.
Garrett
, and
S. J.
Klippenstein
,
J. Phys. Chem.
100
,
12771
(
1996
).
12.
J.
Keck
,
Discuss. Faraday Soc.
33
,
173
(
1962
).
13.
V. A.
Benderskii
,
V. I.
Goldanskii
, and
D. E.
Makarov
,
Phys. Rep.
233
,
195
(
1993
).
14.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
15.
K.
Yamashita
and
W. H.
Miller
,
J. Chem. Phys.
82
,
5475
(
1985
).
16.
H.
Wang
and
W. L.
Hase
,
Chem. Phys.
212
,
247
(
1996
).
17.
H.
Hu
,
M. N.
Kobrak
,
C.
Xu
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
104
,
8058
(
2000
).
18.
D. G.
Truhlar
and
B. C.
Garrett
,
Acc. Chem. Res.
13
,
440
(
1980
).
19.
W. T.
Duncan
,
R. L.
Bell
, and
T. N.
Truong
,
J. Comput. Chem.
19
,
1039
(
1998
).
20.
R. A.
Kuharski
,
D.
Chandler
,
J. A.
Montgomery
, Jr.
,
F.
Rabii
, and
S. J.
Singer
,
J. Phys. Chem.
92
,
3261
(
1988
).
21.
M.
Wilson
and
D.
Chandler
,
Chem. Phys.
149
,
11
(
1990
).
22.
D.
Chandler
and
R. A.
Kuharski
,
Faraday Discuss. Chem. Soc.
85
,
329
(
1988
).
23.
H. M.
Pickett
and
H. L.
Strauss
,
J. Am. Chem. Soc.
92
,
7281
(
1970
).
24.
R. K.
Harris
and
N.
Sheppard
, Proc. Chem. Soc.419 (1961).
25.
A.
Allerhand
,
F.
Chen
, and
H. S.
Gutowsky
,
J. Chem. Phys.
42
,
3040
(
1965
).
26.
F. A. L.
Anet
and
A. J. R.
Bourn
,
J. Am. Chem. Soc.
89
,
760
(
1967
).
27.
M.
Page
and
J. W.
McIver
,
J. Chem. Phys.
88
,
922
(
1988
).
28.
J. A. Dossey, A. D. Otto, L. E. Spence, and C. V. Eynden, Discrete Mathematics, 2nd ed. (Harper Collins, New York, 1993).
29.
C. Berge, Theory of Graphs (Dover, Mineola, NY, 2001).
30.
J.
Keck
,
Adv. Chem. Phys.
13
,
85
(
1967
).
31.
D. G.
Truhlar
and
B. C.
Garrett
,
Ann. Rev. Phys. Chem.
35
,
159
(
1984
).
32.
E.
Wigner
,
Z. Phys. Chem. Abt. B
19
,
203
(
1932
).
33.
R. P.
Bell
,
Trans. Faraday Soc.
55
,
1
(
1959
).
34.
S. C.
Smith
,
J. Phys. Chem. A
104
,
10489
(
2000
).
35.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
36.
B. J.
Berne
,
M.
Borkovec
, and
J. E.
Straub
,
J. Phys. Chem.
92
,
3711
(
1988
).
37.
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).
38.
J. E.
Straub
and
B. J.
Berne
,
J. Chem. Phys.
83
,
1138
(
1985
).
39.
C. J.
Cerjan
and
W. H.
Miller
,
J. Chem. Phys.
75
,
2800
(
1981
).
40.
J.
Kong
et al.,
J. Comput. Chem.
21
,
1532
(
2000
).
41.
J. C.
Corchado
,
J.
Espinoza-Garcia
,
W.-R.
Hu
,
I.
Rossi
, and
D. G.
Truhlar
,
J. Phys. Chem.
99
,
687
(
1995
).
42.
Y.-Y.
Chuang
and
D. G.
Truhlar
,
J. Phys. Chem. A
101
,
3808
(
1997
).
43.
R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed. (Dover, Mineola, NY, 1973).
44.
J. D. Faires and R. L. Burden, Numerical Methods (PWS-Kent, Boston, 1993).
This content is only available via PDF.
You do not currently have access to this content.