The molecular structure of thin pentacene (C22H14) films grown on a Cu(110) surface has been studied by means of He atom scattering, low energy electron diffraction, thermal desorption spectroscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. Depending on the actual film thickness three different crystalline phases have been identified which reveal a characteristic reorientation of the molecular plane relative to the substrate surface. In the monolayer regime the molecules form a highly ordered commensurate (6.5×2) structure with a planar adsorption geometry. For thin multilayers (thickness <2 nm) a second phase is observed which is characterized by a lateral (−0.65 5.69  1.90 1.37) structure and a tilting of the molecular plane of about 28° around their long axis which remains parallel to the surface. Finally, when exceeding a thickness of about 2 nm subsequent growth proceeds with an upright molecular orientation and leads to the formation of crystalline films which are epitaxially oriented with respect to the substrate. The present study thus demonstrates that also on metal substrates highly ordered pentacene films with an upright orientation of the molecular planes can be grown. Photoelectron spectroscopy data indicate further that thick films do not grow in a layer-by-layer mode but reveal a significant degree of roughness.

1.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
,
Adv. Mater. (Weinheim, Ger.)
14
,
99
(
2002
).
2.
D. J.
Gundlach
,
Y. Y.
Lin
,
T. N.
Jackson
,
S. F.
Nelson
, and
D. G.
Schlom
,
IEEE Electron Device Lett.
18
,
87
(
1997
).
3.
N.
Karl
,
Synth. Met.
133–134
,
649
(
2003
).
4.
T. W.
Kelley
and
C. D.
Frisbie
,
J. Phys. Chem. B
105
,
4538
(
2001
).
5.
S. R.
Forrest
,
Chem. Rev. (Washington, D.C.)
97
,
1793
(
1997
).
6.
D.
Holmes
,
S.
Kumaraswamy
,
A. H.
Matzger
, and
K. P.
Vollhardt
,
Chem.-Eur. J.
5
,
3399
(
1999
).
7.
E.
Umbach
,
K.
Glöckler
, and
M.
Sokolowski
,
Surf. Sci.
404
,
20
(
1998
).
8.
D. E.
Hooks
,
T.
Fritz
, and
M. D.
Ward
,
Adv. Mater. (Weinheim, Ger.)
13
,
227
(
2001
).
9.
C.
Seidel
,
R.
Ellerbrake
,
L.
Gross
, and
H.
Fuchs
,
Phys. Rev. B
64
,
195418
(
2001
).
10.
R.
Strohmaier
,
J.
Petersen
,
B.
Gompf
, and
W.
Eisenmenger
,
Surf. Sci.
418
,
91
(
1998
).
11.
T. J.
Schuerlein
,
A.
Schmidt
,
P. A.
Lee
,
W.
Nebesny
, and
N. R.
Armstrong
,
Jpn. J. Appl. Phys., Part 1
34
,
3837
(
1995
).
12.
W.
Gebauer
,
M.
Sokolowski
, and
E.
Umbach
,
Chem. Phys.
227
,
33
(
1998
).
13.
A. H.
Schäfer
,
Ch.
Seidel
, and
H.
Fuchs
,
Adv. Funct. Mater.
11
,
193
(
2001
).
14.
B.
Krause
,
A. C.
Dürr
,
R.
Ritley
,
F.
Schreiber
,
H.
Dosch
, and
D.
Smilgies
,
Phys. Rev. B
66
,
235404
(
2002
).
15.
Q.
Chen
,
T.
Rada
,
A.
McDowall
, and
N. V.
Richardson
,
Chem. Mater.
14
,
743
(
2002
).
16.
P.
Ruffieux
,
O.
Gröning
,
M.
Bielmann
,
C.
Simpson
,
K.
Müllen
,
L.
Schlapbach
, and
P.
Gröning
,
Phys. Rev. B
66
,
073409
(
2002
).
17.
I. P. M.
Bouchoms
,
W. A.
Schoonveld
,
J.
Vrijmoeth
, and
T. M.
Klapwijk
,
Synth. Met.
104
,
175
(
1999
).
18.
D. J.
Gundlach
,
T. N.
Jackson
,
D. G.
Schlom
, and
S. F.
Nelson
,
Appl. Phys. Lett.
74
,
3302
(
1999
).
19.
C. D.
Dimitrakopoulos
,
A. R.
Brown
, and
A.
Pomp
,
J. Appl. Phys.
80
,
2501
(
1996
).
20.
C. C.
Mattheus
,
A. B.
Dros
,
J.
Baas
,
G. T.
Oostergetel
,
A.
Meetsma
,
J. L.
de Boer
, and
T. T. M.
Palstra
,
Synth. Met.
138
,
475
(
2003
).
21.
C. B.
France
,
P. G.
Schroeder
,
J. C.
Forsythe
, and
B. A.
Parkinson
,
Langmuir
19
,
1274
(
2003
).
22.
L.
Casalis
,
M. F.
Danisman
,
B.
Nickel
,
G.
Bracco
,
T.
Toccoli
,
S.
Iannotta
, and
G.
Scoles
,
Phys. Rev. Lett.
90
,
206101
(
2003
).
23.
F. J.
Meyer zu Heringdorf
,
M. C.
Reuter
, and
R. M.
Tromp
,
Nature (London)
412
,
517
(
2001
).
24.
T.
Minakata
,
H.
Imai
,
M.
Ozaki
, and
K.
Saco
,
J. Appl. Phys.
72
,
5220
(
1992
).
25.
S.
Lukas
,
G.
Witte
, and
Ch.
Wöll
,
Phys. Rev. Lett.
88
,
028301
(
2002
).
26.
S.
Lukas
,
S.
Söhnchen
,
G.
Witte
, and
Ch.
Wöll
,
ChemPhysChem
5
,
266
(
2004
).
27.
P.
Fouquet
and
G.
Witte
,
Surf. Sci.
400
,
140
(
1998
).
28.
G.
Loepp
,
S.
Vollmer
,
G.
Witte
, and
Ch.
Wöll
,
Langmuir
15
,
3767
(
1999
).
29.
S.
Lukas
,
S.
Vollmer
,
G.
Witte
, and
Ch.
Wöll
,
J. Chem. Phys.
114
,
10123
(
2001
).
30.
R.
Denecke
,
P.
Väterlein
,
M.
Bassler
,
N.
Wassdahl
,
S.
Butorin
,
A.
Nilsson
,
J.-E.
Rubensson
,
J.
Nordgren
,
N.
Martensson
, and
R.
Nyholm
,
J. Electron Spectrosc. Relat. Phenom.
101–103
,
971
(
1999
).
31.
S.
Reiß
,
H.
Krumm
,
A.
Niklewski
,
V.
Staemmler
, and
Ch.
Wöll
,
J. Chem. Phys.
116
,
7704
(
2002
).
32.
P. A.
Redhead
,
Vacuum
12
,
203
(
1962
).
33.
The appearance of two distinct diffraction patterns on the sample reflects a clear phase separation and preferential ordering in one of the corresponding structures in domains which are comparable with the diameter of the incident electron beam of about 0.2–0.5 mm.
34.
G.
Witte
,
J.
Braun
,
D.
Nowack
,
L.
Bartels
,
B.
Neu
, and
G.
Meyer
,
Phys. Rev. B
58
,
13224
(
1998
).
35.
T.
Yokoyama
,
K.
Seki
,
I.
Morisada
,
K.
Edamatsu
, and
T.
Ohta
,
Phys. Scr.
41
,
189
(
1990
).
36.
H.
Ågren
,
O.
Vahtras
, and
V.
Carravetta
,
Chem. Phys.
196
,
47
(
1995
).
37.
V. Staemmler et al. (unpublished).
38.
H.
Oji
,
R.
Mitsumoto
,
E.
Ito
,
H.
Ishii
,
Y.
Ouchi
,
K.
Seki
,
T.
Yokoyama
,
T.
Ohta
, and
N.
Kosuhi
,
J. Chem. Phys.
109
,
10409
(
1998
).
39.
N.
Sato
,
K.
Seki
, and
H.
Inokuchi
,
J. Chem. Soc., Faraday Trans. 2
2
,
1621
(
1981
).
40.
C.
Mainka
,
P. S.
Bagus
,
A.
Schertel
,
T.
Strunskus
,
M.
Grunze
, and
Ch.
Wöll
,
Surf. Sci.
341
,
L1055
(
1995
).
41.
J. Stöhr, NEXAFS Spectroscopy (Springer, New York, 1992), Vol. 25.
42.
The degree of polarization of the incident light was more than 97%.
43.
K.
Weiss
,
S.
Gebert
,
M.
Wühn
,
H.
Wadepohl
, and
Ch.
Wöll
,
J. Vac. Sci. Technol. A
16
,
1017
(
1998
).
44.
L. G. M.
Pettersson
,
H.
Ågren
,
Y.
Luo
, and
L.
Triguero
,
Surf. Sci.
408
,
1
(
1998
).
45.
Q.
Chen
,
A. J.
McDowell
, and
N. V.
Richardson
,
Langmuir
19
,
10164
(
2003
).
46.
K.
Weiss
,
G.
Beernink
,
F.
Dötz
,
A.
Birkner
,
K.
Müllen
, and
Ch.
Wöll
,
Angew. Chem., Int. Ed. Engl.
38
,
3748
(
1999
).
47.
N.
Karl
and
J.
Marktanner
,
Mol. Cryst. Liq. Cryst.
357
,
1
(
2000
).
48.
J.
Cornil
,
H. P.
Calbert
, and
J. L.
Bredas
,
J. Am. Chem. Soc.
123
,
1250
(
2001
).
49.
M.
Voigt
,
S.
Dorsfeld
,
A.
Volz
, and
M.
Sokolowski
,
Phys. Rev. Lett.
91
,
026103
(
2003
).
50.
The mean free paths were calculated by using the Gries formula in the program electron inelastic-mean-free-path v.1.1 provided by the National Institute of Standards and Technology, NIST.
51.
A. C.
Dürr
,
F.
Schreiber
,
K. A.
Ritley
,
V.
Kruppa
,
J.
Krug
,
H.
Dosch
, and
B.
Struth
,
Phys. Rev. Lett.
90
,
016104
(
2003
).
52.
B.
Krause
,
A. C.
Dürr
,
F.
Schreiber
,
H.
Dosch
, and
O. H.
Seeck
,
J. Chem. Phys.
119
,
3429
(
2003
).
53.
G. Beernink, G. Witte, and Ch. Wöll (unpublished).
54.
P.
Yannoulis
,
R.
Dudde
,
K. H.
Frank
, and
E. E.
Koch
,
Surf. Sci.
189/190
,
519
(
1987
).
55.
N. Karl, in Landolt–Börnstein, New Series, Vol. 17i, edited by O. Madelung, M. Schulz, and H. Weiss (Springer-Verlag, Heidelberg, 1985).
This content is only available via PDF.
You do not currently have access to this content.