Simulations were performed for up to 150 simplified spherical horse heart cytochrome c molecules in the presence of a charged surface, which serves as an approximate model for a lipid membrane. Screened electrostatic and short-ranged attractive as well as repulsive van der Waals forces for interparticle and particle–membrane interactions are utilized in the simulations. At a distance from the membrane, where particle–membrane interactions are negligible, the simulation is coupled to a noninteraction continuum analogous to a heat bath [Geyer et al., J. Chem. Phys. 120, 4573 (2004)]. From the particles’ density profiles perpendicular to the planar surface binding isotherms are derived and compared to experimental results [Heimburg et al. (1999)]. Using a negatively charged structureless membrane surface a saturation effect was found for relatively large particle concentrations. Since biological membranes often contain membrane proteins, we also studied the influence of additional charges on our model membrane mimicking bacterial reaction centers. We find that the onset of the saturation occurs for much lower concentrations and is sensitive to the detailed implementation. Therefore we suggest that local distortion of membrane planarity (undulation), or lipid demixing, or the presence of charged integral membrane proteins create preferential binding sites on the membrane. Only then do we observe saturation at physiological concentrations.

1.
A.
Miyawaki
and
R. Y.
Tsien
,
Methods Enzymol.
327
,
472
(
2000
).
2.
I.
Hamachi
,
A.
Fujita
, and
T.
Kunitake
,
J. Am. Chem. Soc.
119
,
9096
(
1997
).
3.
E. A. J.
Reits
and
J. J.
Neefjes
,
Nat. Cell Biol.
3
,
E145
(
2001
).
4.
T.
Heimburg
,
B.
Angerstein
, and
D.
Marsh
,
Biophys. J.
76
,
2575
(
1999
).
5.
D. J.
Bicout
and
M. J.
Field
,
J. Phys. Chem.
100
,
2489
(
1996
).
6.
S.
Ravichandran
,
J. D.
Madura
, and
J.
Talbot
,
J. Phys. Chem.
105
,
3610
(
2001
).
7.
S. H. Northrup, Cytochrome C: A Multidisciplinary Approach (University Science, Herndon, 1996), Chap. 16.
8.
R. R.
Gabdoulline
and
R. C.
Wade
,
J. Mol. Biol.
306
,
1139
(
2001
).
9.
J. D.
Madura
,
J. M.
Briggs
,
R. C.
Wade
et al.,
Comput. Phys. Commun.
91
,
57
(
1995
).
10.
E.
Dickinson
,
S. A.
Allison
, and
J. A.
McCammon
,
J. Chem. Soc., Faraday Trans. 2
81
,
591
(
1985
).
11.
C.
Gorba
and
V.
Helms
,
Soft Materials
1
,
187
(
2003
).
12.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
13.
L. D.
Eltis
,
R. G.
Herbert
,
P. D.
Barker
,
A. G.
Mauk
, and
S. H.
Northrup
,
Biochemistry
30
,
3663
(
1991
).
14.
J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier Science, Amsterdam, 1996).
15.
U.
Ermler
,
G.
Fritzsch
, and
H.
Michel
,
Structure (London)
2
,
925
(
1994
).
16.
J. H.
Lin
,
N. A.
Baker
, and
J. A.
McCammon
,
Biophys. J.
83
,
1374
(
2002
).
17.
R. A.
Böckmann
,
A.
Hac
,
T.
Heimburg
, and
H.
Grubmüller
,
Biophys. J.
85
,
1647
(
2003
).
18.
T.
Geyer
,
C.
Gorba
, and
V.
Helms
,
J. Chem. Phys.
120
,
4573
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.