The growth of single wall carbon nanotubes (SWNTs) mediated by metal nanoparticles is considered within (i) the surface diffusion growth kinetics model coupled with (ii) a thermal model taking into account heat release of carbon adsorption–desorption on nanotube surface and carbon incorporation into the nanotube wall and (iii) carbon nanotube–inert gas collisional heat exchange. Numerical simulations performed together with analytical estimates reveal various temperature regimes occurring during SWNT growth. During the initial stage, which is characterized by SWNT lengths that are shorter than the surface diffusion length of carbon atoms adsorbed on the SWNT wall, the SWNT temperature remains constant and is significantly higher than that of the ambient gas. After this stage the SWNT temperature decreases towards that of gas and becomes nonuniformly distributed over the length of the SWNT. The rate of SWNT cooling depends on the SWNT–gas collisional energy transfer that, from molecular dynamics simulations, is seen to be efficient only in the SWNT radial direction. The decreasing SWNT temperature may lead to solidification of the catalytic metal nanoparticle terminating SWNT growth or triggering nucleation of a new carbon layer and growth of multiwall carbon nanotubes.

1.
A.
Oberline
,
M.
Endo
, and
T.
Koyama
,
J. Cryst. Growth
32
,
335
(
1976
).
2.
R. T. K. Baker and P. S. Harris, in Chemistry and Physics of Carbon, edited by P. L. Walker, Jr. and P. A. Thrower (Deker, New York, 1978), pp. 83–161, and references therein.
3.
G. G.
Tibbetts
,
J. Cryst. Growth
66
,
632
(
1984
).
4.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
5.
S.
Iijima
,
P. M.
Ajayan
, and
T.
Ichihashi
,
Phys. Rev. Lett.
69
,
3100
(
1992
).
6.
T. W.
Ebbesen
and
P. M.
Ajayan
,
Nature (London)
358
,
220
(
1992
).
7.
P. M.
Ajayan
,
Prog. Cryst. Growth Charact. Mater.
38
,
37
(
1997
).
8.
S.
Iijima
,
Mater. Sci. Eng., B
B19
,
172
(
1993
).
9.
X. F.
Zhang
,
X. B.
Zhang
,
G.
Van Tendeloo
,
S.
Amelinckx
,
M.
Op de Beeck
, and
J.
Van Landuyt
,
J. Cryst. Growth
130
,
368
(
1993
).
10.
S.
Amelinckx
,
X. B.
Zhang
,
D.
Bernaerts
,
X. F.
Zhang
,
V.
Ivanoy
, and
J. B.
Nagy
,
Science
265
,
63
(
1994
).
11.
R. E.
Smalley
,
Mater. Sci. Eng., B
B19
,
1
(
1993
).
12.
M.
Endo
,
K.
Takeuchi
,
S.
Igarashi
,
K.
Kobori
,
M.
Shiraishi
, and
H. W.
Kroto
,
J. Phys. Chem. Solids
54
,
1841
(
1993
).
13.
E. G.
Gamally
and
T. W.
Ebbesen
,
Phys. Rev. B
52
,
2083
(
1995
).
14.
A.
Thess
,
R.
Lee
,
P.
Nikolaev
et al.,
Science
273
,
483
(
1996
).
15.
H.
Lange
,
A.
Huczko
,
M.
Sioda
, and
O.
Louchev
,
J. Nanoscience Nanotechnology
3
,
51
(
2003
).
16.
A.
Gorbunov
,
O.
Jost
,
W.
Pompe
, and
A.
Graff
,
Carbon
40
,
113
(
2002
);
A.
Gorbunov
,
O.
Jost
,
W.
Pompe
, and
A.
Graff
,
Appl. Surf. Sci.
197–198
,
464
(
2002
).
17.
E.
Gamaly
,
A. V.
Rode
,
W. K.
Maser
,
E.
Munoz
,
A. M.
Benito
,
M. T.
Martinez
, and
G. G.
de la Fuente
,
Appl. Phys. A: Mater. Sci. Process.
A70
,
161
(
2000
);
E.
Gamaly
,
A. V.
Rode
,
W. K.
Maser
,
E.
Munoz
,
A. M.
Benito
,
M. T.
Martinez
, and
G. G.
de la Fuente
,
Appl. Phys. A: Mater. Sci. Process.
A69
,
S121
(
1999
).
18.
A. V.
Rode
,
E. G.
Gamaly
, and
B.
Luther-Davies
,
Appl. Phys. A: Mater. Sci. Process.
A70
,
135
(
2000
).
19.
A. A.
Puretzky
,
D. B.
Geohagen
,
X.
Fan
, and
S. J.
Pennycook
,
Appl. Phys. Lett.
76
,
182
(
2000
);
A. A.
Puretzky
,
D. B.
Geohagen
,
X.
Fan
, and
S. J.
Pennycook
,
Appl. Phys. A: Mater. Sci. Process.
A70
,
153
(
2000
).
20.
A. A.
Puretzky
,
H.
Schittenhelm
,
X.
Fan
,
M. J.
Lance
,
L. F.
Allard
, Jr.
, and
D. B.
Geohegan
,
Phys. Rev. B
65
,
245425
(
2002
).
21.
M.
Yudasaka
,
R.
Kikuchi
,
T.
Matsui
,
Y.
Ohki
,
S.
Yoshimura
, and
E.
Ota
,
Appl. Phys. Lett.
67
,
2477
(
1995
).
22.
M.
Yudasaka
,
T.
Komatsu
,
T.
Ichihashi
,
Y.
Achiba
, and
S.
Iijima
,
J. Phys. Chem. B
102
,
4892
(
1998
).
23.
E.
Munoz
,
W. K.
Mazer
,
A. M.
Benito
,
M. T.
Martinez
,
G. F.
de la Fuente
,
A.
Righi
,
J. L.
Sauvajol
,
E.
Anglaret
, and
Y.
Maniette
,
Appl. Phys. A: Mater. Sci. Process.
A70
,
145
(
2000
).
24.
S.
Bandow
,
S.
Asaka
,
Y.
Saito
,
A. M.
Rao
,
L.
Grigorian
,
E.
Richter
, and
P. C.
Eklund
,
Phys. Rev. Lett.
80
,
3779
(
1998
).
25.
P.
Zhang
and
V. H.
Crespi
,
Phys. Rev. Lett.
83
,
1791
(
1999
).
26.
M.
Volpe
and
F.
Cleri
,
J. Chem. Phys.
115
,
3308
(
2001
).
27.
T.
Kawai
,
Y.
Miyamoto
,
O.
Sugino
, and
Y.
Koga
,
Phys. Rev. B
66
,
033404
(
2002
).
28.
J.
Gavillet
,
A.
Loiseau
,
C.
Journet
,
F.
Willaime
,
F.
Ducastelle
, and
J.-C.
Charlier
,
Phys. Rev. Lett.
87
,
275504
(
2001
).
29.
X.
Fan
,
R.
Buczko
,
A. A.
Puretzky
,
D. B.
Geohegan
,
J. Y.
Howe
,
S. T.
Pantelides
, and
S. J.
Pennycook
,
Phys. Rev. Lett.
90
,
145501
(
2003
).
30.
J. R.
Hester
and
O. A.
Louchev
,
Appl. Phys. Lett.
80
,
2580
(
2002
);
O. A.
Louchev
and
J. R.
Hester
,
J. Appl. Phys.
94
,
2002
(
2003
), and references therein.
31.
O. A.
Louchev
,
Y.
Sato
, and
H.
Kanda
,
J. Appl. Phys.
91
,
10074
(
2002
).
32.
O. A.
Louchev
,
Y.
Sato
, and
H.
Kanda
,
Phys. Rev. E
66
,
011601
(
2002
).
33.
O. A.
Louchev
,
T.
Laude
,
Y.
Sato
, and
H.
Kanda
,
J. Chem. Phys.
118
,
7622
(
2003
).
34.
O. A.
Louchev
and
Y.
Sato
,
Appl. Phys. Lett.
74
,
194
(
1999
).
35.
O. A.
Louchev
,
Y.
Sato
, and
H.
Kanda
,
J. Appl. Phys.
89
,
3438
(
2001
).
36.
E. F.
Kukovitsky
,
S. G.
L’vov
, and
N. A.
Sainov
,
Mol. Mater.
10
,
165
(
1998
).
37.
E. F.
Kukovitsky
,
S. G.
L’vov
, and
N. A.
Sainov
,
Chem. Phys. Lett.
317
,
65
(
2000
).
38.
E. F.
Kukovitsky
,
S. G.
L’vov
,
N. A.
Sainov
,
V. A.
Shustov
, and
L. A.
Chernozatonskii
,
Chem. Phys. Lett.
355
,
65
(
2000
).
39.
Y. H.
Lee
,
S. G.
Kim
, and
D.
Tománek
,
Phys. Rev. Lett.
78
,
2393
(
1997
).
40.
Y.-K.
Kwon
,
Y. H.
Lee
,
S. G.
Kim
,
P.
Jund
,
D.
Tománek
, and
R. E.
Smalley
,
Phys. Rev. Lett.
79
,
2065
(
1997
).
41.
N.
Kitamura
and
A.
Oshiyama
,
J. Phys. Soc. Jpn.
70
,
1995
(
2001
).
42.
A. V.
Krasheninnikov
,
K.
Nordlund
,
P. O.
Lehtinen
,
A. S.
Foster
,
A.
Ayuela
, and
R. M.
Nieminen
,
Phys. Rev. B
69
,
073402
(
2004
).
43.
K.
Bolton
and
A.
Rosén
,
Phys. Chem. Chem. Phys.
4
,
481
(
2002
).
44.
K.
Bolton
and
S.
Gustavsson
,
Chem. Phys.
291
,
161
(
2003
).
45.
F.
Kokai
,
K.
Takahashi
,
M.
Yudasaka
,
R.
Yamada
,
T.
Ichihashi
, and
S.
Iijima
,
J. Phys. Chem. B
103
,
4346
(
1999
).
46.
F.
Kokai
,
K.
Takahashi
,
D.
Kasuya
,
M.
Yudasaka
, and
S.
Iijima
,
Appl. Phys. A: Mater. Sci. Process.
A73
,
401
(
2001
).
47.
C. J.
Brabec
,
A.
Maiti
,
C.
Roland
, and
J.
Bernholc
,
Chem. Phys. Lett.
236
,
150
(
1995
).
48.
A.
Maiti
,
C. J.
Brabec
,
C. M.
Roland
, and
J.
Bernholc
,
Phys. Rev. Lett.
73
,
2468
(
1994
).
49.
J. Ch.
Charlier
,
X.
Blase
,
A.
De Vita
, and
R.
Car
,
Appl. Phys. A: Mater. Sci. Process.
A68
,
276
(
1999
).
50.
X.
Blase
,
J.-C.
Charlier
,
A. De.
Vita
et al.,
Phys. Rev. Lett.
83
,
5078
(
1999
).
51.
A.
Maiti
,
C. J.
Brabec
,
C. M.
Roland
, and
J.
Bernholc
,
Phys. Rev. Lett.
73
,
2468
(
1994
).
52.
A.
Maiti
,
C. J.
Brabec
,
C.
Roland
, and
J.
Bernholc
,
Phys. Rev. B
52
,
14850
(
1995
).
53.
J. C.
Charlier
,
A.
De Vita
,
X.
Blase
, and
R.
Car
,
Science
275
,
646
(
1997
).
54.
M. B.
Nardelli
,
C.
Brabec
,
A.
Maiti
,
C.
Roland
, and
J.
Bernholc
,
Phys. Rev. Lett.
80
,
313
(
1998
).
55.
D. H.
Robertson
,
D. W.
Brenner
, and
J. M.
Mintmire
,
Phys. Rev. B
45
,
12592
(
1992
).
56.
N.
Park
,
K.
Lee
,
S.
Han
,
J.
Yu
, and
J.
Ihm
,
Phys. Rev. B
65
,
121405
(R) (
2002
).
57.
Y.
Shibuta
and
S.
Maruyama
,
Physica B
323
,
187
(
2002
).
58.
J.
Tersoff
,
Phys. Rev. Lett.
61
,
2879
(
1988
);
J.
Tersoff
,
Phys. Rev. B
37
,
6991
(
1988
).
59.
D. V.
Brenner
,
Phys. Rev. B
42
,
9458
(
1990
).
60.
K.
Nordlund
,
J.
Keinonen
, and
T.
Matilla
,
Phys. Rev. Lett.
77
,
699
(
1996
).
61.
J. P.
Lu
and
W.
Yang
,
Phys. Rev. B
49
,
11421
(
1994
).
62.
B. I.
Henri
and
M. T.
Batchelor
,
Phys. Rev. E
68
,
016112
(
2003
).
63.
Sum of the binding energy, Eb=7.3 eV, and the kinetic energy, which is ≪Eb for conditions when inert gas pressure is high enough to effectively dissipate excessive kinetic energy that carbon atoms may have after evaporation.
64.
Y. S. Touloukian, Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. II, p. 41.
65.
C. N.
Hinshelwood
,
Proc. R. Soc. London, Ser. A
113
,
230
(
1927
).
66.
S.
Nordholm
,
L. E. B.
Börjesson
,
L.
Ming
, and
H.
Svedung
,
Ber. Bunsenges. Phys. Chem.
101
,
574
(
1997
).
67.
V.
Celli
,
D.
Himes
,
P.
Tran
,
J. P.
Toennies
,
C. H.
Wöll
, and
G.
Zhang
,
Phys. Rev. Lett.
66
,
3160
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.