Two-dimensional infrared (2D IR) spectroscopy of the symmetric and asymmetric CO stretching vibrations of Rh(CO)2acac in hexane has been used to investigate vibrational coherence transfer, dephasing, and population relaxation in a multilevel vibrational system. The transfer of coherence between close-lying vibrational frequencies results in extra relaxation-induced peaks in the 2D IR spectrum, whose amplitude depends on the coherence transfer rate. Coherence transfer arises from the mutual interaction of the bright CO stretches with dark states, which in this case reflects the mutual d-π* back bonding of the Rh center to both the terminal carbonyls and the acetylacenonate ligand. For 2D IR relaxation experiments with variable waiting times, coherent dynamics lead to the modulation of peak amplitudes, while incoherent population relaxation and exchange results in the growth of the relaxation-induced peaks. We have modeled the data by propagating the density matrix with the Redfield equation, incorporating all vibrational relaxation processes during all three experimental time periods and including excitation reorientation effects arising from relaxation. Coherence and population transfer time scales from the symmetric to the asymmetric stretch were found to be 350 fs and 3 ps, respectively. We also discuss a diagrammatic approach to incorporating all vibrational relaxation processes into the nonlinear response function, and show how coherence transfer influences the analysis of structural variables from 2D IR spectroscopy.

1.
D. W.
Oxtoby
,
Annu. Rev. Phys. Chem.
32
,
77
(
1981
).
2.
J. C.
Owrutsky
,
D.
Raftery
, and
R. M.
Hochstrasser
,
Annu. Rev. Phys. Chem.
45
,
519
(
1994
).
3.
K. D.
Rector
and
M. D.
Fayer
,
Int. Rev. Phys. Chem.
17
,
261
(
1998
).
4.
Y. J.
Yan
and
S.
Mukamel
,
J. Chem. Phys.
89
,
5160
(
1988
).
5.
A.
Laubereau
and
W.
Kaiser
,
Rev. Mod. Phys.
50
,
607
(
1978
).
6.
R. M.
Stratt
and
M.
Maroncelli
,
J. Phys. Chem.
100
,
12981
(
1996
).
7.
D. W.
Oxtoby
,
Adv. Chem. Phys.
40
,
1
(
1979
).
8.
D. W.
Oxtoby
,
J. Phys. Chem.
87
,
3028
(
1983
).
9.
J.
Skinner
,
J. Chem. Phys.
107
,
8717
(
1997
).
10.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
11.
J.
Sung
and
R. J.
Silbey
,
J. Chem. Phys.
115
,
9266
(
2001
).
12.
J.
Sung
and
R. J.
Silbey
,
J. Chem. Phys.
118
,
2443
(
2003
).
13.
Y. J.
Yan
and
S.
Mukamel
,
J. Chem. Phys.
94
,
179
(
1991
).
14.
J. C.
Deak
,
L. K.
Iwaki
,
S. T.
Rhea
, and
D. D.
Dlott
,
J. Raman Spectrosc.
31
,
263
(
2000
).
15.
D. D.
Dlott
,
Chem. Phys.
266
,
149
(
2001
).
16.
K. Blum, Density Matrix Theory and Applications, 2nd ed. (Plenum, New York, 1996).
17.
C. P. Schlicter, Principles of Magnetic Resonance (Harper and Row, New York, 1963).
18.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
19.
T. W.
Pollard
and
R.
Friesner
,
J. Chem. Phys.
100
,
5054
(
1994
).
20.
K. F.
Freed
and
A. A.
Villaeys
,
Chem. Phys.
39
,
51
(
1979
).
21.
D. W.
Oxtoby
and
S. A.
Rice
,
Chem. Phys. Lett.
42
,
1
(
1976
).
22.
Y.
Ohtsuki
and
Y.
Fujimura
,
J. Chem. Phys.
91
,
3903
(
1989
).
23.
Y.
Ohtsuki
and
Y.
Fujimura
,
Chem. Phys.
134
,
103
(
1989
).
24.
Y.
Ohtsuki
,
M.
Hayashi
, and
Y.
Fujimura
,
J. Chem. Phys.
93
,
126
(
1990
).
25.
Y.
Ohtsuki
and
Y.
Fujimura
,
J. Chem. Phys.
104
,
8321
(
1996
).
26.
S.
Ruhman
and
N.
Scherer
,
Chem. Phys.
233
,
159
(
1998
).
27.
E.
Gershgoren
,
E.
Gordon
, and
S.
Ruhman
,
J. Chem. Phys.
106
,
4806
(
1997
).
28.
J. M.
Jean
,
C.-K.
Chan
, and
G. R.
Fleming
,
Isr. J. Chem.
28
,
169
(
1988
).
29.
J. M.
Jean
,
R. A.
Friesner
, and
G. R.
Fleming
,
J. Chem. Phys.
96
,
5827
(
1992
).
30.
M.
Werst
,
Y.
Jia
,
L.
Mets
, and
G. R.
Fleming
,
Biophys. J.
61
,
868
(
1992
).
31.
M.
Du
,
X.
Xie
,
Y.
Jia
,
L.
Mets
, and
G. R.
Fleming
,
Chem. Phys. Lett.
201
,
535
(
1993
).
32.
R. van Grondelle, H. Bergström, V. Sundström, R. J. van Dorssen, M. Vos, and C. N. Hunter, in Photosynthetic Light Harvesting Systems, edited by H. S. a. S. Schneider (de Gruyter, New York, 1988), p. 519.
33.
R.
van Grondelle
and
V.
Novoderezhkin
,
Biochemistry
40
,
15057
(
2001
).
34.
G. A.
Voth
and
R. M.
Hochstrasser
,
J. Phys. Chem.
100
,
13034
(
1996
).
35.
C. B.
Harris
,
R. M.
Shelby
, and
P. A.
Cornelius
,
Phys. Rev. Lett.
38
,
1415
(
1977
).
36.
C. B.
Harris
,
R. M.
Shelby
, and
P. A.
Cornelius
,
Chem. Phys. Lett.
57
,
8
(
1978
).
37.
R. M.
Shelby
,
C. B.
Harris
, and
P. A.
Cornelius
,
J. Chem. Phys.
70
,
34
(
1979
).
38.
P.
De Bree
and
D. A.
Wiersma
,
J. Chem. Phys.
70
,
790
(
1979
).
39.
T. J.
Aartsma
and
D. A.
Wiersma
,
Chem. Phys. Lett.
42
,
520
(
1976
).
40.
S. A.
Henck
and
K. K.
Lehmann
,
Chem. Phys. Lett.
144
,
281
(
1988
).
41.
J. B.
Asbury
,
T.
Steinel
,
C.
Stromberg
,
K. J.
Gaffney
,
I. R.
Piletic
,
A.
Goun
, and
M. D.
Fayer
,
Chem. Phys. Lett.
374
,
362
(
2003
).
42.
M. C.
Asplund
,
M. T.
Zanni
, and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
8219
(
2000
).
43.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
J. Phys. Chem. A
107
,
5258
(
2003
).
44.
S.
Woutersen
and
P.
Hamm
,
J. Phys.: Condens. Matter
14
,
R1035
(
2002
).
45.
A.
Piryatinski
,
V.
Chernyak
, and
S.
Mukamel
,
Chem. Phys.
266
,
285
(
2001
).
46.
J. D.
Beckerle
,
M. P.
Casassa
,
R. R.
Cavanagh
,
E. J.
Heilweil
, and
J. C.
Stephenson
,
Chem. Phys.
160
,
487
(
1992
).
47.
C. Ferrante, A. Tokmakoff, C. Taiti, A. S. Kwok, R. S. Francis, K. D. Rector, and M. D. Fayer, in Ultrafast Processes in Spectroscopy, edited by O. Svelto, S. D. Silvestri, and G. Denardo (Plenum, New York, 1996), p. 115.
48.
E. J.
Heilweil
,
R. R.
Cavanaugh
, and
J. C.
Stephenson
,
J. Chem. Phys.
89
,
230
(
1988
).
49.
O.
Golonzka
,
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
86
,
2154
(
2001
).
50.
O.
Golonzka
,
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
J. Chem. Phys.
115
,
10814
(
2001
).
51.
N.
Demirdöven
,
M.
Khalil
,
O.
Golonzka
, and
A.
Tokmakoff
,
J. Phys. Chem. A
105
,
8025
(
2001
).
52.
N.
Demirdöven
,
M.
Khalil
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
89
,
237401
(
2002
).
53.
A. M.
Moran
,
J.
Dreyer
, and
S.
Mukamel
,
J. Chem. Phys.
118
,
1347
(
2003
).
54.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
90
,
047401
(
2003
).
55.
C.
Scheurer
and
S.
Mukamel
,
J. Chem. Phys.
115
,
4989
(
2001
).
56.
C.
Scheurer
and
S.
Mukamel
,
J. Chem. Phys.
116
,
6803
(
2002
).
57.
O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, in Liquid Dynamics: Experiment, Simulation, and Theory, edited by J. T. Fourkas (ACS, Washington, DC, 2002), Vol. 820, p. 169.
58.
D. M.
Jonas
,
Annu. Rev. Phys. Chem.
54
,
397
(
2003
).
59.
O.
Golonzka
and
A.
Tokmakoff
,
J. Chem. Phys.
115
,
297
(
2001
).
60.
S. M. Gallagher
Faeder
and
D. M.
Jonas
,
Phys. Rev. A
62
,
033820
(
2000
).
61.
M.
Yang
and
G. R.
Fleming
,
J. Chem. Phys.
111
,
27
(
1999
).
62.
M.
Yang
,
K.
Ohta
, and
G. R.
Fleming
,
J. Chem. Phys.
110
,
10243
(
1999
).
63.
V. Durà-Vilà and C. C. Cummins (personal communication).
The Amsterdam Density Functional package [
C. Fonseca
Guerra
,
J. G.
Snijders
,
G.
te Velde
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
391
(
1998
)] was used to do a geometry optimization and calculate the harmonic frequencies of Rh(CO)2(acac).
Basis set Zora(V) was used as implemented in the ADF suite. Relativistic effects were included by virtue of the zero order regular approximation [
E.
van Lenthe
,
E. J.
Baerends
, and
J. G. J.
Snijders
,
Chem. Phys.
99
,
4597
(
1993
)].
The local density approximation by Vosko, Wilk and Nusair (VWN) [
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
)] was used together with the exchange and correlation corrections published by Perdew and Wang (PW91)
[
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
)].
64.
M. S.
Pshenichnikov
,
W. P.
de Boeij
, and
D. A.
Wiersma
,
Phys. Rev. Lett.
76
,
4701
(
1996
).
65.
H. Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules (Elsevier, Amsterdam, 2004).
66.
M.
Zanni
,
N.-H.
Ge
,
Y. S.
Kim
, and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
11265
(
2001
).
67.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
J. Chem. Phys.
105
,
2953
(
1996
).
68.
M. S. Pshenichnikov, W. P. De Boeij, and D. A. Wiersma, Femtochemistry: Ultrafast Chemical and Physical Processes in Molecular Systems (The Lausanne Conference), Lausanne, 4–8 September 1995 (1996), p. 501.
69.
R. W.
Schoenlein
,
D. M.
Mittleman
,
J. J.
Shiang
,
A. P.
Alivisatos
, and
C. V.
Shank
,
Phys. Rev. Lett.
70
,
1014
(
1993
).
70.
S.
Mukamel
,
Annu. Rev. Phys. Chem.
51
,
691
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.