The packing and orientation of water molecules in the vicinity of solutes strongly influence the solute hydration thermodynamics in aqueous solutions. Here we study the charge density dependent hydration of a broad range of spherical monovalent ionic solutes (with solute diameters from ∼0.4 nm to 1.7 nm) through molecular dynamics simulations in the simple point charge model of water. Consistent with previous experimental and theoretical studies, we observe a distinct asymmetry in the structure and thermodynamics of hydration of ions. In particular, the free energy of hydration of negative ions is more favorable than that of positive ions of the same size. This asymmetry persists over the entire range of solute sizes and cannot be captured by a continuum description of the solvent. The favorable hydration of negative ions arises primarily from the asymmetric charge distribution in the water molecule itself, and is reflected in (i) a small positive electrostatic potential at the center of a neutral solute, and (ii) clear structural (packing and orientation) differences in the hydration shell of positive and negative ions. While the asymmetry arising from the positive potential can be quantified in a straightforward manner, that arising from the structural differences in the fully charged states is difficult to quantify. The structural differences are highest for the small ions and diminish with increasing ion size, converging to hydrophobiclike hydration structure for the largest ions studied here. We discuss semiempirical measures following Latimer, Pitzer, and Slansky [J. Chem. Phys. 7, 108 (1939)] that account for these structural differences through a shift in the ion radius. We find that these two contributions account completely for the asymmetry of hydration of positive and negative ions over the entire range of ion sizes studied here. We also present preliminary calculations of the dependence of ion hydration asymmetry on the choice of water model that demonstrate its sensitivity to the details of ion–water interactions.

1.
P. H.
Yancey
,
M. E.
Clark
,
S. C.
Hand
,
R. D.
Bowlus
, and
G. N.
Somero
,
Science
217
,
1214
(
1982
).
2.
K. D.
Collins
and
M. W.
Washabaugh
,
Q. Rev. Biophys.
4
,
323
(
1985
).
3.
V. A.
Parsegian
,
Nature (London)
378
,
335
(
1995
).
4.
R. L.
Baldwin
,
Biophys. J.
71
,
2056
(
1996
).
5.
K. D.
Collins
,
Biophys. J.
72
,
65
(
1997
).
6.
M. G.
Cacace
,
E. M.
Landau
, and
J. J.
Ramsden
,
Q. Rev. Biophys.
30
,
241
(
1997
).
7.
A.
Kalra
,
N.
Tugcu
,
S. M.
Cramer
, and
S.
Garde
,
J. Phys. Chem.
105
,
6380
(
2001
).
8.
W. M.
Latimer
,
K. S.
Pitzer
, and
C. M.
Slansky
,
J. Chem. Phys.
7
,
108
(
1939
).
9.
H. L. Friedman and C. V. Krishnan, Water-A Comperehensive Treatise, Vol. 3 (Plenum, New York, 1973).
10.
Y. Marcus, Ion Solvation (Wiley, New York, 1985).
11.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
Garcı́a
,
J. Phys. Chem.
100
,
1206
(
1996
).
12.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London, Ser. A
373
,
27
(
1980
).
13.
B.
Jayaram
,
R.
Fine
,
K.
Sharp
, and
B.
Honig
,
J. Phys. Chem.
93
,
4320
(
1989
).
14.
F.
Figueirido
,
G. S.
del Buono
, and
R. M.
Levy
,
J. Chem. Phys.
103
,
6133
(
1995
).
15.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
Garcı́a
,
J. Phys. Chem.
102
,
7885
(
1998
).
16.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
Garcı́a
,
J. Chem. Phys.
107
,
9275
(
1997
).
17.
S.
Garde
,
G.
Hummer
, and
M. E.
Paulaitis
,
J. Chem. Phys.
108
,
1552
(
1998
).
18.
G.
Markovich
,
S.
Pollack
,
R.
Giniger
, and
O.
Cheshnovsky
,
J. Chem. Phys.
101
,
9344
(
1994
).
19.
J. V.
Coe
,
Int. Rev. Phys. Chem.
20
,
33
(
2001
).
20.
D.
Asthagiri
,
L. R.
Pratt
, and
H. S.
Ashbaugh
,
J. Chem. Phys.
119
,
2702
(
2003
).
21.
H. S.
Ashbaugh
,
J. Phys. Chem.
104
,
7235
(
2000
).
22.
G.
Hummer
,
L. R.
Pratt
,
A. E.
Garcı́a
,
S.
Garde
,
B. J.
Berne
, and
S. W.
Rick
,
J. Phys. Chem. B
102
,
3841
(
1998
).
23.
H. S.
Ashbaugh
,
S.
Sakane
, and
R. H.
Wood
,
J. Phys. Chem. B
102
,
3844
(
1998
).
24.
G.
Hummer
and
S.
Garde
,
Phys. Rev. Lett.
80
,
4193
(
1998
).
25.
F. H.
Stillinger
,
J. Solution Chem.
2
,
141
(
1973
).
26.
K. A.
Lum
,
D.
Chandler
, and
J. D.
Weeks
,
J. Phys. Chem. B
103
,
4570
(
1999
).
27.
H. J. C.
Berendsen
and
D.
van der Spoel
,
Comput. Phys. Commun.
91
,
43
(
1995
).
28.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model. [Electronic Publication]
7
,
306
(
2001
).
29.
H. J. C. Berendsen, W. F. van Gunsteren, J. P. M. Postma, and J. Hermans, in Intermolecular forces: Proceedings of the 14th Jerusalem Symposium on quantum chemistry and biochemistry, edited by B. Pullman, 1981.
30.
S.
Yoo
,
Y. A.
Lei
, and
X. C.
Zeng
,
J. Chem. Phys.
119
,
6083
(
2003
).
31.
D. E.
Smith
and
L. X.
Dang
,
J. Chem. Phys.
100
,
3757
(
1994
).
32.
S. J.
Stuart
and
B. J.
Berne
,
J. Phys. Chem. A
103
,
10300
(
1999
).
33.
P.
Jungwirth
and
D. J.
Tobias
,
J. Phys. Chem. B
106
,
6361
(
2002
).
34.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
35.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
36.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
37.
S.
Nose
,
Mol. Phys.
52
,
255
(
1984
).
38.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
39.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
40.
S.
Nose
and
M. L.
Klein
,
Mol. Phys.
50
,
1055
(
1983
).
41.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
,
952
(
1992
).
42.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
43.
G.
Hummer
and
A.
Szabo
,
J. Chem. Phys.
105
,
2004
(
1996
).
44.
B.
Guillot
and
Y.
Guissani
,
J. Phys. Chem.
99
,
8075
(
1993
).
45.
S.
Garde
,
G.
Hummer
,
A. E.
Garcı́a
,
L. R.
Pratt
, and
M. E.
Paulaitis
,
Phys. Rev. E
53
,
R4310
(
1996
).
46.
S.
Garde
,
A. E.
Garcı́a
,
L. R.
Pratt
, and
G.
Hummer
,
Biophys. Chem.
78
,
21
(
1999
).
47.
L. R.
Pratt
and
A.
Pohorille
,
Chem. Rev. (Washington, D.C.)
102
,
2671
(
2002
).
48.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
Garcı́a
,
J. Phys. Chem.
99
,
14188
(
1995
).
49.
C. Y.
Lee
,
J. A.
McCammon
, and
P. J.
Rossky
,
J. Chem. Phys.
80
,
4448
(
1984
).
50.
L. R.
Pratt
,
J. Phys. Chem.
96
,
25
(
1992
).
51.
J.
Alejandre
,
D. J.
Tildesley
, and
G. A.
Chapela
,
J. Chem. Phys.
102
,
4574
(
1995
).
52.
V. P.
Sokhan
and
D. J.
Tildesley
,
Mol. Phys.
92
,
625
(
1997
).
53.
H. S.
Ashbaugh
,
Mol. Phys.
97
,
433
(
1999
).
54.
H.
Patel
,
E. B.
Nauman
, and
S.
Garde
,
J. Chem. Phys.
119
,
9199
(
2003
).
55.
M.
Paluch
,
Adv. Colloid Interface Sci.
84
,
27
(
2000
).
56.
Y.
Marcus
,
J. Chem. Soc., Faraday Trans.
87
,
2995
(
1991
).
57.
L. R. Pratt and G. Hummer, Computational Chemistry, Biophysics, and Aqueous Solutions: Simulation and Theory of Electrostatic Interactions in Solution (AIP Conference Proceedings 492, Santa Fe, New Mexico, 1999).
58.
L. R.
Pratt
,
Annu. Rev. Phys. Chem.
53
,
409
(
2002
).
59.
H. S.
Ashbaugh
and
M. E.
Paulaitis
,
J. Am. Chem. Soc.
123
,
10721
(
2001
).
60.
R. M. J.
Noyes
,
Z. Phys.
84
,
513
(
1962
).
61.
R. H.
Stokes
,
J. Am. Chem. Soc.
86
,
979
(
1964
).
62.
A. A.
Rashin
and
K. S.
Honig
,
J. Phys. Chem.
89
,
5588
(
1985
).
63.
J. K.
Hyun
and
T.
Ichiye
,
J. Phys. Chem. B
101
,
3596
(
1997
).
64.
L. X.
Dang
,
J. Chem. Phys.
96
,
6970
(
1992
).
65.
L. X.
Dang
,
J. Am. Chem. Soc.
117
,
6954
(
1995
).
66.
S.
Koneshan
,
J. C.
Rasaiah
,
R. M.
Lynden-Bell
, and
S. H.
Lee
,
J. Phys. Chem.
102
,
4193
(
1998
).
67.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J. C.
Berendsen
,
J. Chem. Phys.
108
,
10220
(
1998
).
68.
Although we have chosen to represent the ion size by rionion–ion/2, other reasonable choices of ion size do not alter the analysis and conclusions that follow.
69.
We do not refer to q〈φ〉0 term as a “correction” term, because technically no “correction” needs to be made to the ΔG values. Our goal here is simply to identify the origins of hydration asymmetry and quantify them.
70.
The shift due to positive electrostatic potential does not rely explicitly on the choice of the parameter used to represent the ion size, but depends on the measured values of cumulants.
This content is only available via PDF.
You do not currently have access to this content.