We introduce a path sampling method for the computation of rate constants for complex systems with a highly diffusive character. Based on the recently developed transition interface sampling (TIS) algorithm this procedure increases the efficiency by sampling only parts of complete transition trajectories. The algorithm assumes the loss of memory for diffusive progression along the reaction coordinate. We compare the new partial path technique to the TIS method for a simple diatomic system and show that the computational effort of the new method scales linearly, instead of quadratically, with the width of the diffusive barrier. The validity of the memory loss assumption is also discussed.

1.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
2.
D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic, San Diego, CA, 2002).
3.
J. J.
Timoneda
and
J. T.
Hynes
,
J. Phys. Chem.
95
,
10431
(
1991
).
4.
M.
Sprik
,
Chem. Phys.
258
,
139
(
2000
).
5.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
6.
P. G.
Bolhuis
,
C.
Dellago
, and
D.
Chandler
,
Faraday Discuss.
110
,
421
(
1998
).
7.
C.
Dellago
,
P. G.
Bolhuis
, and
D.
Chandler
,
J. Chem. Phys.
110
,
6617
(
1999
).
8.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
9.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geissler
,
Adv. Chem. Phys.
123
,
1
(
2002
).
10.
P. G.
Bolhuis
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
12129
(
2003
).
11.
T. S. van
Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
12.
P. G.
Bolhuis
,
J. Phys.: Condens. Matter
15
,
S113
(
2003
).
13.
N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
14.
A. B.
Bortz
,
M. H.
Kalos
, and
J. L.
Lebowitz
,
J. Comput. Phys.
17
,
10
(
1975
).
15.
D. T.
Gillespie
,
J. Comput. Phys.
22
,
403
(
1976
).
16.
K. A.
Fichthorn
and
W. H.
Weinberg
,
J. Chem. Phys.
95
,
1090
(
1991
).
17.
As not only the average velocity should be the same 〈λ̇(x)〉φi,i−q=〈λ̇(x)〉φi,i−1, but the whole distribution of velocities at λi, we used in Sec. III the velocity distribution overlap as measure of the memory loss.
18.
To simplify notation we assume here an equidistant interface separation for all interfaces. One is, however, by no means restricted to do so and one can place each interface at an optimum position concerning efficiency, memory loss and ergodic sampling.
19.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
20.
This is in contrast with the dramatic decrease of acceptance as a function of the barrier width we found in Ref. 12 using TPS. This decrease was caused by an increasing rejection probability due to the TPS fixed path length constraint. TIS is less sensitive to this as the path length is variable. However, for rough, nonflat free energy landscapes the decrease in shooting acceptance is more generic and will even affect TIS. Using a stochastic shooting move might alleviate this problem.10,12 
21.
M. J.
Ruiz-Montero
,
D.
Frenkel
, and
J. J.
Brey
,
Mol. Phys.
90
,
925
(
1997
).
22.
G.
Hummer
and
I. G.
Kevrekidis
,
J. Chem. Phys.
118
,
10762
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.