The nonequilibrium molecular dynamics computer simulation method was used to study microsegregated block copolymer systems in a selective solvent under a shear flow field. Two polymer concentrations were considered, 0.3 and 0.4, corresponding to the body centered cubic spherical and hexagonal cylindrical zero-shear phases, respectively. As the shear rate increased, both systems exhibited two-stage shear thinning, a peak in the scalar pressure, and normal stress differences. Microscopic connections were investigated by calculating the gyration and bond orientation tensors and the interaction energies per particle. At high shear rates, polymer chains elongate and orient along the direction of shear, and this is accompanied by the breaking-up of domains. The structure-rheology relation was discussed with regard to the morphological changes reported in our last study for the same systems. In particular, the structurally relevant critical values of the shear rate were found to delimit different behaviors of the shear rate-dependencies obtained in this work.

1.
D. M. Heyes, The Liquid State: Applications of Molecullar Simulations (Wiley, Great Britain, 1998).
2.
D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990).
3.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, London, 1989).
4.
P.
Minary
,
G. J.
Martyna
, and
M. E.
Tuckerman
,
J. Chem. Phys.
118
,
2510
(
2003
).
5.
J.
Delhommelle
and
D. J.
Evans
,
J. Chem. Phys.
115
,
43
(
2001
).
6.
S. T.
Cui
,
P. T.
Cummings
, and
H. D.
Cochran
,
J. Chem. Phys.
104
,
255
(
1996
).
7.
S.
Hess
,
C.
Aust
,
L.
Bennett
,
M.
Kröger
,
C. P.
Borgmeyer
, and
T.
Weider
,
Physica A
240
,
126
(
1997
).
8.
D. J.
Evans
,
Physica A
118
,
51
(
1983
).
9.
Z.
Xu
,
J. J.
de Pablo
, and
S.
Kim
,
J. Chem. Phys.
102
,
5836
(
1995
).
10.
M.
Kröger
,
W.
Loose
, and
S.
Hess
,
J. Rheol.
37
,
1057
(
1993
).
11.
N. Phan-Thien, Understanding Viscoelasticity (Springer-Verlag, Berlin, 2002).
12.
Flexible Polymer Chain Dynamics in Elongational Flow, edited by T. Q. Nguyen and H.-H. Kausch (Springer-Verlag, Berlin, 1999).
13.
F. S.
Bates
and
G. H.
Fredrickson
,
Phys. Today
52
,
32
(
1999
).
14.
I. W. Hamley, The Physics of Block Copolymers (Oxford University Press, London, 1999).
15.
T. P.
Lodge
,
B.
Pudil
, and
K. J.
Hanley
,
Macromolecules
35
,
4707
(
2002
).
16.
G. H.
Fredrickson
,
Annu. Rev. Mater. Sci.
26
,
501
(
1996
).
17.
I. Rychkov and K. Yoshikawa (2003), Macromolecular Theory & Simulations (to be published).
18.
W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice–Hall, London, 1971).
19.
D. J.
Evans
and
G. P.
Morriss
,
Comput. Phys. Rep.
1
,
297
(
1984
).
20.
F.
Zhang
,
D. J.
Searles
,
D. J.
Evans
,
J. S.
den Toom Hansen
, and
D. J.
Isbister
,
J. Chem. Phys.
111
,
18
(
1999
).
21.
R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987).
22.
P. H.
Hünenberger
,
J. Chem. Phys.
116
,
6880
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.