A modification of the nudged elastic band (NEB) method is presented that enables stable optimizations to be run using both the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) quasi-Newton and slow-response quenched velocity Verlet minimizers. The performance of this new “doubly nudged” DNEB method is analyzed in conjunction with both minimizers and compared with previous NEB formulations. We find that the fastest DNEB approach (DNEB/L-BFGS) can be quicker by up to 2 orders of magnitude. Applications to permutational rearrangements of the seven-atom Lennard-Jones cluster (LJ7) and highly cooperative rearrangements of LJ38 and LJ75 are presented. We also outline an updated algorithm for constructing complicated multi-step pathways using successive DNEB runs.

1.
H.
Eyring
,
Chem. Rev. (Washington, D.C.)
17
,
65
(
1935
).
2.
M. G.
Evans
and
M.
Polanyi
,
Trans. Faraday Soc.
31
,
875
(
1935
).
3.
K. J. Laidler, Chemical Kinetics (Harper & Row, New York, 1987).
4.
J. N.
Murrell
and
K. J.
Laidler
,
Trans. Faraday Soc.
64
,
371
(
1968
).
5.
D. J. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, Cambridge, 2003).
6.
P.
Pulay
,
G.
Fogorasi
,
F.
Pang
, and
J. E.
Boggs
,
J. Am. Chem. Soc.
101
,
2550
(
1979
).
7.
G.
Fogorasi
,
X.
Zhou
,
P. W.
Taylor
, and
P.
Pulay
,
J. Am. Chem. Soc.
114
,
8191
(
1992
).
8.
P.
Pulay
and
G.
Fogorasi
,
J. Chem. Phys.
96
,
2856
(
1996
).
9.
J.
Baker
,
A.
Kessi
, and
B.
Delley
,
J. Chem. Phys.
105
,
192
(
1996
).
10.
C.
Peng
,
P. Y.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
17
,
49
(
1996
).
11.
J.
Baker
,
D.
Kinghorn
, and
P.
Pulay
,
J. Chem. Phys.
110
,
4986
(
1999
).
12.
S. R.
Billeter
,
A. J.
Turner
, and
W.
Thiel
,
Phys. Chem. Chem. Phys.
2
,
2177
(
2000
).
13.
B.
Paizs
,
J.
Baker
,
S.
Suhai
, and
P.
Pulay
,
J. Chem. Phys.
113
,
6566
(
2000
).
14.
V.
Bakken
and
T.
Helgaker
,
J. Chem. Phys.
117
,
9160
(
2002
).
15.
G. M.
Crippen
and
H. A.
Scheraga
,
Arch. Biochem. Biophys.
144
,
462
(
1971
).
16.
J. W.
McIver
and
A.
Komornicki
,
J. Am. Chem. Soc.
94
,
2625
(
1972
).
17.
J.
Pancı́ř
,
Collect. Czech. Chem. Commun.
40
,
1112
(
1974
).
18.
R. L.
Hilderbrandt
,
Comput. Chem. (Oxford)
1
,
179
(
1977
).
19.
C. J.
Cerjan
and
W. H.
Miller
,
J. Chem. Phys.
75
,
2800
(
1981
).
20.
J.
Simons
,
P.
Jørgenson
,
H.
Taylor
, and
J.
Ozment
,
J. Phys. Chem.
87
,
2745
(
1983
).
21.
D.
O’Neal
,
H.
Taylor
, and
J.
Simons
,
J. Phys. Chem.
88
,
1510
(
1984
).
22.
S.
Bell
and
J. S.
Crighton
,
J. Chem. Phys.
80
,
2464
(
1984
).
23.
A.
Banerjee
,
N.
Adams
,
J.
Simons
, and
R.
Shepard
,
J. Phys. Chem.
89
,
52
(
1985
).
24.
J.
Baker
,
J. Comput. Chem.
7
,
385
(
1986
).
25.
D. T.
Nguyen
and
D. A.
Case
,
J. Phys. Chem.
89
,
4020
(
1985
).
26.
J.
Baker
,
J. Comput. Chem.
8
,
563
(
1987
).
27.
M. C.
Smith
,
Int. J. Quantum Chem.
37
,
773
(
1990
).
28.
J.
Nichols
,
H.
Taylor
,
P.
Schmidt
, and
J.
Simons
,
J. Chem. Phys.
92
,
340
(
1990
).
29.
J.
Baker
and
W. H.
Hehre
,
Int. J. Quantum Chem.
12
,
606
(
1991
).
30.
J.
Baker
,
J. Comput. Chem.
13
,
240
(
1992
).
31.
C. J.
Tsai
and
K. D.
Jordan
,
J. Phys. Chem.
97
,
11227
(
1993
).
32.
D. J.
Wales
,
J. Chem. Soc. Faraday Trans.
89
,
1305
(
1993
).
33.
S. F.
Chekmarev
,
Chem. Phys. Lett.
227
,
354
(
1994
).
34.
D. J.
Wales
,
J. Chem. Phys.
101
,
3750
(
1994
).
35.
D. J.
Wales
and
J.
Uppenbrink
,
Phys. Rev. B
50
,
12342
(
1994
).
36.
J.-Q.
Sun
and
K.
Ruedenberg
,
J. Chem. Phys.
101
,
2157
(
1994
).
37.
J.-Q.
Sun
and
K.
Ruedenberg
,
J. Chem. Phys.
101
,
2168
(
1994
).
38.
F.
Jensen
,
J. Chem. Phys.
102
,
6706
(
1995
).
39.
J. M.
Bofill
and
M.
Comajuan
,
J. Comput. Chem.
16
,
1326
(
1995
).
40.
Q.
Zhao
and
J. B.
Nicholas
,
J. Chem. Phys.
104
,
767
(
1996
).
41.
W.
Quapp
,
Chem. Phys. Lett.
253
,
286
(
1996
).
42.
J.
Baker
and
F.
Chan
,
J. Comput. Chem.
17
,
888
(
1996
).
43.
T. R.
Walsh
and
D. J.
Wales
,
J. Chem. Soc., Faraday Trans.
92
,
2505
(
1996
).
44.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
107
,
375
(
1997
).
45.
L. J.
Munro
and
D. J.
Wales
,
Faraday Discuss.
106
,
409
(
1997
).
46.
A.
Ulitsky
and
D.
Shalloway
,
J. Chem. Phys.
106
,
10099
(
1997
).
47.
B.
Paizs
,
G.
Fogarasi
, and
P.
Pulay
,
J. Chem. Phys.
109
,
6571
(
1998
).
48.
O.
Farkas
and
H. B.
Schlegel
,
J. Chem. Phys.
109
,
7100
(
1998
).
49.
N.
Mousseau
and
G. T.
Barkema
,
Phys. Rev. E
57
,
2419
(
1998
).
50.
H.
Goto
,
Chem. Phys. Lett.
292
,
254
(
1998
).
51.
W.
Quapp
,
M.
Hirsch
,
O.
Imig
, and
D.
Heidrich
,
J. Comput. Chem.
19
,
1087
(
1998
).
52.
O.
Farkas
and
H. B.
Schlegel
,
J. Chem. Phys.
111
,
10806
(
1999
).
53.
L. J.
Munro
and
D. J.
Wales
,
Phys. Rev. B
59
,
3969
(
1999
).
54.
D. J.
Wales
,
J. P. K.
Doye
,
M. A.
Miller
,
P. N.
Mortenson
, and
T. R.
Walsh
,
Adv. Chem. Phys.
115
,
1
(
2000
).
55.
Y.
Kumeda
,
L. J.
Munro
, and
D. J.
Wales
,
Chem. Phys. Lett.
341
,
185
(
2001
).
56.
L. R.
Pratt
,
J. Chem. Phys.
85
,
5045
(
1986
).
57.
R.
Elber
and
M.
Karplus
,
Chem. Phys. Lett.
139
,
375
(
1987
).
58.
R. S.
Berry
,
H. L.
Davis
, and
T. L.
Beck
,
Chem. Phys. Lett.
147
,
13
(
1988
).
59.
R.
Czerminski
and
R.
Elber
,
J. Chem. Phys.
92
,
5580
(
1990
).
60.
S.
Fischer
and
M.
Karplus
,
Chem. Phys. Lett.
194
,
252
(
1992
).
61.
L. L.
Stachó
and
M. I.
Bán
,
Theor. Chim. Acta
83
,
433
(
1992
).
62.
I. V.
Ionova
and
E. A.
Carter
,
J. Chem. Phys.
98
,
6377
(
1993
).
63.
L. L.
Stachó
and
M. I.
Bán
,
Theor. Chim. Acta
84
,
535
(
1993
).
64.
G.
Dömötör
,
M. I.
Bán
, and
L. L.
Stachó
,
J. Comput. Chem.
14
,
1491
(
1993
).
65.
C.
Peng
and
H. B.
Schlegel
,
Isr. J. Chem.
33
,
449
(
1993
).
66.
A.
Matro
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
101
,
10458
(
1994
).
67.
O. S.
Smart
,
Chem. Phys. Lett.
222
,
503
(
1994
).
68.
M. I.
Bán
,
G.
Dömötör
, and
L. L.
Stachó
,
J. Mol. Struct.: THEOCHEM
311
,
29
(
1994
).
69.
G.
Mills
and
H.
Jónsson
,
Phys. Rev. Lett.
72
,
1124
(
1994
).
70.
I. V.
Ionova
and
E. A.
Carter
,
J. Chem. Phys.
103
,
5437
(
1995
).
71.
H. Jónsson, G. Mills, and W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), p. 385.
72.
L. L.
Stachó
,
G.
Dömötör
, and
M. I.
Bán
,
Chem. Phys. Lett.
311
,
328
(
1999
).
73.
R.
Elber
and
M.
Karplus
,
Chem. Phys. Lett.
311
,
335
(
1999
).
74.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
75.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
76.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
77.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
115
,
9657
(
2001
).
78.
R. A.
Miron
and
K. A.
Fichthorn
,
J. Chem. Phys.
115
,
8742
(
2001
).
79.
P.
Maragakis
,
S. A.
Andreev
,
Y.
Brumer
,
D. R.
Reichman
, and
E.
Kaxiras
,
J. Chem. Phys.
117
,
4651
(
2002
).
80.
D. J.
Wales
and
T. R.
Walsh
,
J. Chem. Phys.
105
,
6957
(
1996
).
81.
D. J.
Wales
,
Mol. Phys.
100
,
3285
(
2002
).
82.
D. A.
Evans
and
D. J.
Wales
,
J. Chem. Phys.
119
,
9947
(
2003
).
83.
H. B.
Schlegel
,
J. Comput. Chem.
24
,
1514
(
2003
).
84.
G. Henkelman, G. Johannesson, and H. Jónsson, in Progress in Theoretical Chemistry and Physics, edited by S. D. Schwartz (Kluwer Academic, Dordrecht, 2000), p. 269.
85.
T. A.
Halgren
and
W. N.
Lipscomb
,
Chem. Phys. Lett.
49
,
225
(
1977
).
86.
M. J. S.
Dewar
,
E. F.
Healy
, and
J. J. P.
Stewart
,
J. Chem. Soc., Faraday Trans. 2
80
,
227
(
1984
).
87.
C.
Cardenas-Lailhacar
and
M. C.
Zerner
,
Int. J. Quantum Chem.
55
,
429
(
1995
).
88.
D. A.
Liotard
,
Int. J. Quantum Chem.
44
,
723
(
1992
).
89.
C.
Choi
and
R.
Elber
,
J. Chem. Phys.
94
,
751
(
1991
).
90.
F. Jensen, Introduction to Computational Chemistry (Wiley, New York, 1999).
91.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1989).
92.
R.
Crehuet
and
M. J.
Field
,
J. Chem. Phys.
118
,
9563
(
2003
).
93.
D. C.
Liu
and
J.
Nocedal
,
Math. Program.
45
,
503
(
1989
).
94.
J.
Nocedal
,
Math. Comput.
35
,
773
(
1980
).
95.
J. Nocedal, Software for Large-scale Unconstrained Optimization (Northwestern University Press, Evanston, 2000) 〈http://www.ece.northwestern.edu/∼nocedal/lbfgs.html〉
96.
K.
Müller
and
L. D.
Brown
,
Theor. Chim. Acta
53
,
75
(
1979
).
97.
D. R.
Alfonso
and
K. D.
Jordan
,
J. Comput. Chem.
24
,
990
(
2003
).
98.
D. R. Alfonso, Driver for Performing Minimum Energy Path Optimizations Using the Nudged Elastic Band Algorithm (2002). 〈http://www.pitt.edu/∼alfonso/NEB/neb.html〉
99.
D. J. Wales, OPTIM: A Program for Optimizing Geometries and Calcu-lating Reaction Pathways (University of Cambridge Press, Cambridge, U.K., 2003) 〈http://www-wales.ch.cam.ac.uk/software.html〉
100.
Y. M.
Rhee
,
J. Chem. Phys.
113
,
6021
(
2000
).
101.
R. E.
Leone
and
P. v. R.
Schleyer
,
Angew. Chem., Int. Ed. Engl.
9
,
860
(
1970
).
102.
J. P. K.
Doye
,
M. A.
Miller
, and
D. J.
Wales
,
J. Chem. Phys.
111
,
8417
(
1999
).
103.
M. A.
Miller
,
J. P. K.
Doye
, and
D. J.
Wales
,
Phys. Rev. E
60
,
3701
(
1999
).
104.
J. P.
Neirotti
,
F.
Calvo
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
112
,
10340
(
2000
).
105.
F.
Calvo
,
J. P.
Neirotti
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
112
,
10350
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.