In continuing pursuit of thermochemical accuracy to the level of 0.1 kcal mol−1, the heats of formation of NCO, HNCO, HOCN, HCNO, and HONC have been rigorously determined using state-of-the-art ab initio electronic structure theory, including conventional coupled cluster methods [coupled cluster singles and doubles (CCSD), CCSD with perturbative triples (CCSD(T)), and full coupled cluster through triple excitations (CCSDT)] with large basis sets, conjoined in cases with explicitly correlated MP2-R12/A computations. Limits of valence and all-electron correlation energies were extrapolated via focal point analysis using correlation consistent basis sets of the form cc-pVXZ (X=2–6) and cc-pCVXZ (X=2–5), respectively. In order to reach subchemical accuracy targets, core correlation, spin-orbit coupling, special relativity, the diagonal Born–Oppenheimer correction, and anharmonicity in zero-point vibrational energies were accounted for. Various coupled cluster schemes for partially including connected quadruple excitations were also explored, although none of these approaches gave reliable improvements over CCSDT theory. Based on numerous, independent thermochemical paths, each designed to balance residual ab initio errors, our final proposals are ΔHf,0(NCO)=+30.5,ΔHf,0(HNCO)=−27.6,ΔHf,0(HOCN)=−3.1,ΔHf,0(HCNO)=+40.9, and ΔHf,0(HONC)=+56.3 kcal mol−1. The internal consistency and convergence behavior of the data suggests accuracies of ±0.2 kcal mol−1 in these predictions, except perhaps in the HCNO case. However, the possibility of somewhat larger systematic errors cannot be excluded, and the need for CCSDTQ [full coupled cluster through quadruple excitations] computations to eliminate remaining uncertainties is apparent.

1.
J. A.
Miller
and
C. T.
Bowman
,
Prog. Energy Combust. Sci.
15
,
287
(
1989
).
2.
J. D.
Mertens
,
A. Y.
Chang
,
R. K.
Hanson
, and
C. T.
Bowman
,
Int. J. Chem. Kinet.
21
,
1049
(
1989
).
3.
J. D.
Mertens
,
K.
Kohse-Höinghaus
,
R. K.
Hanson
, and
C. T.
Bowman
,
Int. J. Chem. Kinet.
23
,
655
(
1991
).
4.
J. D.
Mertens
,
A. Y.
Chang
,
R. K.
Hanson
, and
C. T.
Bowman
,
Int. J. Chem. Kinet.
24
,
279
(
1992
).
5.
Y.
He
,
X.
Liu
,
M. C.
Lin
, and
C. F.
Melius
,
Int. J. Chem. Kinet.
23
,
1129
(
1991
).
6.
J. A.
Miller
and
C. T.
Bowman
,
Int. J. Chem. Kinet.
23
,
289
(
1991
).
7.
M.
Lin
,
Y.
He
, and
C.
Melius
,
J. Phys. Chem.
97
,
9124
(
1993
).
8.
P.
Glarborg
,
P.
Kristensen
,
S.
Jensen
, and
K.
Damjohansen
,
Combust. Flame
98
,
241
(
1994
).
9.
M.
Wooldridge
,
R.
Hanson
, and
C.
Bowman
,
Int. J. Chem. Kinet.
28
,
361
(
1996
).
10.
R. A.
Perry
and
D. L.
Siebers
,
Nature (London)
324
,
657
(
1986
).
11.
R. A.
Perry
,
J. Chem. Phys.
82
,
5485
(
1985
).
12.
W. R.
Anderson
,
J. A.
Vanderhoff
,
A. J.
Kotlar
,
M. A.
Dewilde
, and
R. A.
Beyer
,
J. Chem. Phys.
77
,
1677
(
1982
).
13.
K.-Y.
Du
and
D. W.
Setser
,
Chem. Phys. Lett.
153
,
393
(
1988
).
14.
S.
Wategaonkar
and
D. W.
Setser
,
J. Phys. Chem.
97
,
10028
(
1993
).
15.
H.
Okabe
,
J. Chem. Phys.
53
,
3507
(
1970
).
16.
B. J.
Sullivan
,
G. P.
Smith
, and
D. R.
Crosley
,
Chem. Phys. Lett.
96
,
307
(
1983
).
17.
T. A.
Spiglanin
,
R. A.
Perry
, and
D. W.
Chandler
,
J. Phys. Chem.
90
,
6184
(
1986
).
18.
X.
Liu
and
R. D.
Coombe
,
J. Chem. Phys.
91
,
7543
(
1989
).
19.
D. R.
Cyr
,
R. E.
Continetti
,
R. B.
Metz
,
D. L.
Osborn
, and
D. M.
Neumark
,
J. Chem. Phys.
97
,
4937
(
1992
).
20.
A. L. L.
East
,
C. S.
Johnson
, and
W. D.
Allen
,
J. Chem. Phys.
98
,
1299
(
1993
).
21.
J. H.
Teles
,
G.
Maier
,
B. A.
Hess
, Jr.
,
L. J.
Schaad
,
M.
Winnewisser
, and
B. P.
Winnewisser
,
Chem. Ber.
122
,
753
(
1989
).
22.
A. L. L.
East
and
W. D.
Allen
,
J. Chem. Phys.
99
,
4638
(
1993
).
23.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
100
,
4498
(
1994
).
24.
S. S.
Brown
,
H. L.
Berghout
, and
F. F.
Crim
,
J. Chem. Phys.
105
,
8103
(
1996
).
25.
M.
Zyrianov
,
T.
Droz-Georget
,
A.
Sanov
, and
H.
Reisler
,
J. Chem. Phys.
105
,
8111
(
1996
).
26.
H. L.
Berghout
,
S. S.
Brown
,
R.
Delgado
, and
F. F.
Crim
,
J. Chem. Phys.
109
,
2257
(
1998
).
27.
M.
Zyrianov
,
T.
Droz-Georget
, and
H.
Reisler
,
J. Chem. Phys.
110
,
2059
(
1999
).
28.
M.
Zyrianov
,
A.
Sanov
,
T.
Droz-Georget
, and
H.
Reisler
,
J. Chem. Phys.
110
,
10774
(
1999
).
29.
A. A.
Hoops
,
R. T.
Bise
,
J. R.
Gascooke
, and
D. M.
Neumark
,
J. Chem. Phys.
114
,
9020
(
2001
).
30.
C. R.
Brazier
,
R. S.
Ram
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
120
,
381
(
1986
).
31.
W. R.
Anderson
,
J. Phys. Chem.
93
,
530
(
1989
).
32.
M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, (American Chemical Society, Washington, D.C., 1985) 3rd ed.
33.
G.
Schönnenbeck
and
F.
Stuhl
,
Chem. Phys. Lett.
264
,
199
(
1997
).
34.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
35.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
36.
J. P.
Kenny
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
118
,
7353
(
2003
).
37.
E. F.
Valeev
,
W. D.
Allen
,
R.
Hernandez
,
C. D.
Sherrill
, and
H. F.
Schaefer
,
J. Chem. Phys.
118
,
8594
(
2003
).
38.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1987
).
39.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
40.
J.
Noga
and
W.
Kutzelnigg
,
J. Chem. Phys.
101
,
7738
(
1994
).
41.
W.
Klopper
and
C. C. M.
Samson
,
J. Chem. Phys.
116
,
6397
(
2002
).
42.
E. F.
Valeev
and
H. F.
Schaefer
,
J. Chem. Phys.
113
,
3990
(
2000
).
43.
E. F.
Valeev
,
W. D.
Allen
,
H. F.
Schaefer
, and
A. G.
Császár
,
J. Chem. Phys.
114
,
2875
(
2001
).
44.
D.
Feller
and
D. A.
Dixon
,
J. Phys. Chem. A
103
,
6413
(
1999
).
45.
D. A.
Dixon
,
D.
Feller
, and
G.
Sandrone
,
J. Phys. Chem. A
103
,
4744
(
1999
).
46.
D.
Feller
and
D. A.
Dixon
,
J. Phys. Chem. A
104
,
3048
(
2000
).
47.
D. A.
Dixon
and
K. A.
Peterson
,
J. Chem. Phys.
115
,
6327
(
2001
).
48.
D. A.
Dixon
,
D.
Feller
, and
K. A.
Peterson
,
J. Chem. Phys.
115
,
2576
(
2001
).
49.
D. A.
Dixon
,
W. A. de
Jong
,
K. A.
Peterson
, and
J. S.
Francisco
,
J. Phys. Chem. A
106
,
4725
(
2002
).
50.
D.
Feller
,
D.
Dixon
, and
J.
Francisco
,
J. Phys. Chem. A
107
,
1604
(
2003
).
51.
J. M.
Gonzales
,
C.
Pak
,
R. S.
Cox
,
W. D.
Allen
,
G.
Tarczay
, and
A. G.
Császár
,
Chem.-Eur. J.
9
,
2173
(
2003
).
52.
W. D. Allen, A. L. L. East, and A. G. Császár, in Structures and Conformations of Non-Rigid Molecules, edited by J. Laane, M. Dakkouri, B. van der Vecken, and H. Oberhammer (Kluwer, Dordrecht, 1993), p. 343.
53.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
9751
(
1998
).
54.
A. G. Császár, G. Tarczay, M. L. Leininger, O. L. Polyansky, J. Tennyson, and W. D. Allen, in Spectroscopy from Space, edited by J. Demaison and K. Sarka (Kluwer, Dordrecht, 2001), p. 317.
55.
M. W. Chase, NIST-JANAF Thermochemical Tables, 4th ed. (American Chemical Society, Washington, D.C., 1998).
56.
B.
Ruscic
,
A. F.
Wagner
,
L. B.
Harding
et al.,
J. Phys. Chem. A
106
,
2727
(
2002
).
57.
C. E. Moore, Atomic Energy Levels (Office of Standard Reference Data, National Bureau of Standards, U.S. GPO, Washington, DC, 1971).
58.
P. S. H.
Bolman
,
J. M.
Brown
,
A.
Carrington
,
I.
Kopp
, and
D. A.
Ramsay
,
Proc. R. Soc. London, Ser. A
343
,
17
(
1975
).
59.
S. E.
Bradforth
,
E. H.
Kim
,
D. W.
Arnold
, and
D. M.
Neumark
,
J. Chem. Phys.
98
,
800
(
1993
).
60.
W.
Klopper
,
J. Chem. Phys.
102
,
6168
(
1995
).
61.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand, Princeton, NJ, 1979).
62.
O. L.
Polyansky
,
A. G.
Császár
,
S. V.
Shirin
,
N. F.
Zobov
,
P.
Barletta
,
J.
Tennyson
,
D. W.
Schwenke
, and
P. J.
Knowles
,
Science
299
,
539
(
2003
).
63.
I. M.
Mills
and
A. G.
Császár
,
Spectrochim. Acta, Part A
53
,
1101
(
1997
).
64.
S. A.
Tashkun
,
V. I.
Perevalov
,
J. L.
Teffo
,
L. S.
Rothman
, and
V. G.
Tyuterev
,
J. Quant. Spectrosc. Radiat. Transf.
60
,
785
(
1998
).
65.
T.
Rajamaki
,
A.
Miani
, and
L.
Halonen
,
J. Chem. Phys.
118
,
6358
(
2003
).
66.
J. M. L.
Martin
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Chem. Phys.
97
,
8361
(
1992
).
67.
Y.
Pak
,
R. C.
Woods
, and
K. A.
Peterson
,
J. Chem. Phys.
106
,
5123
(
1997
).
68.
D.
Patel-Misra
,
D. G.
Sauder
, and
P. J.
Dagdigian
,
J. Chem. Phys.
93
,
5448
(
1990
).
69.
J. M.
Brown
and
F.
Jorgensen
,
Adv. Chem. Phys.
LII
,
117
(
1983
).
70.
N.
Pinnavaia
,
M. J.
Bramley
,
M.-D.
Su
,
W. H.
Green
, and
N. C.
Handy
,
Mol. Phys.
78
,
319
(
1993
).
71.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
72.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
73.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
74.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
, Jr.
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1996
).
75.
Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
76.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
77.
J. A.
Pople
and
R. K.
Nesbet
,
J. Chem. Phys.
22
,
571
(
1954
).
78.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley-Interscience, New York, 1986).
79.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 1st edition, revised (McGraw-Hill, New York, 1989).
80.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
81.
J. A.
Pople
,
J. S.
Binkley
, and
R.
Seeger
,
Int. J. Quantum Chem., Symp.
10
,
1
(
1976
).
82.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
83.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
,
J. Chem. Phys.
86
,
2881
(
1987
).
84.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
89
,
7382
(
1988
).
85.
M.
Rittby
and
R. J.
Bartlett
,
J. Phys. Chem.
92
,
3033
(
1988
).
86.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
87.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
88.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
).
89.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
90.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
89
,
3401
(
1988
).
91.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
93
,
6104
(
1990
).
92.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
93.
T. J.
Lee
,
R.
Kobayashi
,
N. C.
Handy
, and
R. D.
Amos
,
J. Chem. Phys.
96
,
8931
(
1992
).
94.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
95.
S. R.
Gwaltney
and
M.
Head-Gordon
,
J. Chem. Phys.
115
,
2014
(
2001
).
96.
A. R.
Hoy
,
I. M.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
).
97.
I.
Suzuki
,
J. Mol. Spectrosc.
25
,
479
(
1968
).
98.
W. S.
Benedict
and
E. K.
Plyler
,
Can. J. Phys.
35
,
1235
(
1957
).
99.
J.
Koput
,
B. P.
Winnewisser
, and
M.
Winnewisser
,
Chem. Phys. Lett.
225
,
357
(
1996
).
100.
The equilibrium geometrical parameters for HNCO are obtained from the Kraitchman equations (Refs. 101 and 102) using vibration-rotation interaction constants computed via ab initio methods (Ref. 20) and empirical rotational constants (Refs. 103 and 104).
101.
J.
Kraitchman
,
Am. J. Phys.
21
,
17
(
1953
).
102.
C. C.
Costain
,
J. Chem. Phys.
29
,
864
(
1958
).
103.
K.
Yamada
,
J. Mol. Spectrosc.
79
,
323
(
1980
).
104.
W. H.
Hocking
,
M. C. L.
Gerry
, and
G.
Winnewisser
,
Can. J. Phys.
53
,
1869
(
1975
).
105.
See EPAPS Document No. E-JCPSA6-120-303419 for focal point extrapolations of the core correlation energy corrections, as well as the post-CCSDT perturbative quadruples corrections, for reactions (123456789101112).
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
106.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
107.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F. S.
Schaefer
,
J. Chem. Phys.
84
,
4481
(
1986
).
108.
A. G.
Ioannou
,
R. D.
Amos
, and
N. C.
Handy
,
Chem. Phys. Lett.
251
,
52
(
1996
).
109.
N. C.
Handy
and
A. M.
Lee
,
Chem. Phys. Lett.
252
,
425
(
1996
).
110.
E. F.
Valeev
and
C. D.
Sherrill
,
J. Chem. Phys.
118
,
3921
(
2003
).
111.
S. A.
Perera
and
R. J.
Bartlett
,
Chem. Phys. Lett.
216
,
606
(
1993
).
112.
K. Balasubramanian, Relativistic Effects in Chemistry: Part A, Theory and Techniques (Wiley, New York, 1997).
113.
K. Balasubramanian, Relativistic Effects in Chemistry: Part B, Applications (Wiley, New York, 1997).
114.
R. D.
Cowan
and
D. C.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
115.
G.
Tarczay
,
A. G.
Császár
,
W.
Klopper
, and
H. M.
Quiney
,
Mol. Phys.
99
,
1769
(
2001
).
116.
ACES II is a program product of the Quantum Theory Project, University of Florida. J. F. Stanton, J. Gauss, J. D. Watts et al., Integral packages included are VMOL (J. Almlöf and P. R. Taylor); VPROPS (P. Taylor); ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, and P. R. Taylor).
117.
J.
Kong
,
C. A.
White
,
A. I.
Krylov
et al.,
J. Comput. Chem.
21
,
1532
(
2000
).
118.
T. Daniel Crawford, C. David Sherrill, Edward F. Valeev et al. PSI 3.2 (2003).
119.
M. J. Frisch, G. W. Trucks, M. Head-Gordon et al., GAUSSIAN 94, Revision C, Gaussian Inc., Pittsburgh, PA, 1995.
120.
J. L.
Dunham
,
Phys. Rev.
41
,
721
(
1932
).
121.
G. Herzberg, Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand, New York, 1950).
122.
H. H.
Nielsen
,
Rev. Mod. Phys.
23
,
90
(
1951
).
123.
I. M. Mills, in Molecular Spectroscopy: Modern Research, edited by K. N. Rao and C. W. Mathews (Academic, New York, 1972), Vol. 1, p. 115.
124.
D. Papousek and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1982).
125.
J. K. G. Watson, in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1977), Vol. 6, p. 1.
126.
W. D.
Allen
,
Y.
Yamaguchi
,
A. G.
Császár
,
D. A.
Clabo
, Jr.
,
R. B.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
145
,
427
(
1990
).
127.
D. A.
Clabo
, Jr.
,
W. D.
Allen
,
R. B.
Remington
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
Chem. Phys.
123
,
187
(
1988
).
128.
H. L. Woodcock, A. G. Császár, W. D. Allen, and H. F. Schaefer (unpublished).
129.
G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, NJ, 1945).
130.
According to general formulas for the G0 term which have been derived in our laboratory (unpublished).
131.
S.
Albert
,
K. K.
Albert
,
M.
Winnewisser
, and
B. P.
Winnewisser
,
J. Mol. Struct.
599
,
347
(
2001
).
132.
K. Irikura and D. J. Frurip, Computational Thermochemistry (American Chemical Society, Washington DC, 1998).
133.
N. D. K.
Petraco
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
116
,
10229
(
2002
).
134.
G.
Tarczay
,
A. G.
Császár
,
W.
Klopper
,
V.
Szalay
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
110
,
11971
(
1999
).
135.
D.
Feller
,
J. Chem. Phys.
111
,
4373
(
1999
).
136.
T. A.
Ruden
,
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
371
,
62
(
2003
).
137.
J.
Olsen
,
J. Chem. Phys.
113
,
7140
(
2000
).
138.
B.
Ruscic
,
D.
Feller
,
D. A.
Dixon
,
K. A.
Peterson
,
L. B.
Harding
,
R. L.
Asher
, and
A. F.
Wagner
,
J. Phys. Chem. A
105
,
1
(
2001
).
139.
W. A.
Shapley
and
G. B.
Backsay
,
J. Phys. Chem.
103
,
6624
(
1999
).
140.
A. D.
McLean
,
G. H.
Loew
, and
D. S.
Berkowitz
,
J. Mol. Spectrosc.
64
,
184
(
1977
).
141.
L.
Farnell
,
R. H.
Nobes
, and
L.
Radom
,
J. Mol. Spectrosc.
93
,
271
(
1982
).
142.
N. C.
Handy
,
C. W.
Murray
, and
R. D.
Amos
,
Philos. Mag. B
69
,
755
(
1994
).
143.
M. T.
Nguyen
,
K.
Pierloot
, and
L. G.
Vanquickenborne
,
Chem. Phys. Lett.
181
,
83
(
1991
).
144.
A. P.
Rendell
,
T. J.
Lee
, and
R.
Lindh
,
Chem. Phys. Lett.
194
,
84
(
1992
).
145.
K.
Yamada
,
B. P.
Winnewisser
, and
M.
Winnewisser
,
J. Mol. Spectrosc.
56
,
449
(
1975
).
146.
P. R.
Bunker
,
B. M.
Landsberg
, and
B. P.
Winnewisser
,
J. Mol. Spectrosc.
74
,
9
(
1979
).
147.
B. P.
Winnewisser
,
M.
Winnewisser
, and
C. W.
Mathews
,
J. Mol. Spectrosc.
126
,
460
(
1987
).
148.
S.
Albert
,
M.
Winnewisser
, and
B. P.
Winnewisser
,
Ber. Bunsenges. Phys. Chem.
101
,
1165
(
1997
).
149.
S.
Albert
,
K. K.
Albert
,
M.
Winnewisser
, and
B. P.
Winnewisser
,
Ber. Bunsenges. Phys. Chem.
102
,
1428
(
1998
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.