An algorithm is presented to compute time scales of complex processes following predetermined milestones along a reaction coordinate. A non-Markovian hopping mechanism is assumed and constructed from underlying microscopic dynamics. General analytical analysis, a pedagogical example, and numerical solutions of the non-Markovian model are presented. No assumption is made in the theoretical derivation on the type of microscopic dynamics along the reaction coordinate. However, the detailed calculations are for Brownian dynamics in which the velocities are uncorrelated in time (but spatial memory remains).

1.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
et al.,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
2.
W. Y.
Yang
and
M.
Gruebele
,
Nature (London)
423
,
193
(
2003
).
3.
R.
Elber
,
A.
Ghosh
,
A.
Cardenas
et al.,
Adv. Chem. Phys.
126
,
93
(
2003
).
4.
W.
Nowak
,
R.
Czerminski
, and
R.
Elber
,
J. Am. Chem. Soc.
113
,
5627
(
1991
).
5.
D. Moroni, P. G. Bolhuis, and T. S. van Erp (unpublished).
6.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
7.
D.
Zuckerman
and
T.
Woolf
,
J. Chem. Phys.
116
,
2586
(
2002
).
8.
C. W. Gardiner, Handbook of Stochastic Methods for Physics Chemistry and Natural Sciences (Springer-Verlag, Berlin, 1942).
9.
R. Zwanzig, Non-equilibrium Statistical Mechanics (Oxford University Press, Oxford, 2002).
10.
V. M.
Kenkre
,
E. W.
Montroll
, and
M. F.
Shlesinger
,
J. Stat. Phys.
9
,
45
(
1973
).
11.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
This content is only available via PDF.
You do not currently have access to this content.