Using electrodynamics calculations, we have discovered one dimensional array structures built from spherical silver nanoparticles that produce remarkably narrow (∼ meV or less) plasmon resonance spectra upon irradiation with light that is polarized perpendicular to the array axis. The narrow lines require a minimum particle radius of about 30 nm to achieve. Variations of the plasmon resonance wavelength, extinction efficiency and width with particle size, array structure, interparticle distance and polarization direction are examined, and conditions which lead to the smallest widths are demonstrated. A simple analytical expression valid for infinite lattices shows that the sharp resonance arises from cancellation between the single particle width and the imaginary part of the radiative dipolar interaction.

1.
J. J.
Storhoff
,
R.
Elghanian
,
R. C.
Mucic
,
C. A.
Mirkin
, and
R. L.
Letsinger
,
J. Am. Chem. Soc.
120
,
1959
(
1998
).
2.
B. H.
Schneider
,
E. L.
Dickinson
,
M. D.
Vach
,
J. V.
Hoijer
, and
L. V.
Howard
,
Biosens. Bioelectron.
15
,
597
(
2000
).
3.
H.-L.
Zhang
,
S. D.
Evans
,
J. R.
Henderson
,
R. E.
Miles
, and
T.-H.
Shen
,
Nanotechnology
13
,
439
(
2002
).
4.
E.
Hutter
,
J. H.
Fendler
, and
D.
Roy
,
J. Phys. Chem. B
105
,
11159
(
2001
).
5.
Z.
Gu
,
R.
Horie
,
S.
Kubo
,
Y.
Yamada
,
A.
Fujishima
, and
O.
Sato
,
Agnew. Chem.
41
,
1153
(
2002
).
6.
N.
Felidy
,
J.
Aubard
,
G.
Levi
,
J. R.
Krenn
,
M.
Salerno
,
G.
Schider
,
B.
Lamprecht
,
A.
Leitner
, and
F. R.
Aussenegg
,
Phys. Rev. B
65
,
075419
/
1
(
2002
).
7.
P.
Royer
,
J. P.
Goudonnet
,
R. J.
Warmack
, and
T. L.
Ferrell
,
Phys. Rev. B
35
,
3753
(
1987
).
8.
C. A.
Foss
,
G. L.
Hornyak
,
J. A.
Stockert
, and
C.
Martin
,
J. Phys. Chem.
98
,
2963
(
1994
).
9.
P. M.
Tomchuk
and
B. P.
Tomchuk
,
J. Exp. Theor. Phys.
85
,
360
(
1997
).
10.
H.
Hovel
,
S.
Fritz
,
A.
Hilger
, and
U.
Kreibig
,
Phys. Rev. B
48
,
18178
(
1993
).
11.
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag: New York, 1995), Vol. 25.
12.
M.
Quinten
and
U.
Kreibig
,
Appl. Opt.
32
,
6173
(
1993
).
13.
S.
Malynych
and
G.
Chumanov
,
J. Am. Chem. Soc.
125
,
2896
(
2002
).
14.
A.
Taleb
,
C.
Petit
, and
M. P.
Pileni
,
Phys. Rev. B
102
,
2214
(
1998
).
15.
A.
Taleb
,
V.
Russier
,
A.
County
, and
M. P.
Pileni
,
Phys. Rev. B
59
,
13350
(
1999
).
16.
K. L.
Kelly
,
E.
Coronado
,
L.
Zhao
, and
G. C.
Schatz
,
J. Phys. Chem. B
107
,
668
(
2003
).
17.
L.
Zhao
,
K. L.
Kelly
, and
G. C.
Schatz
,
J. Phys. Chem. B
107
,
7343
(
2003
).
18.
S.
Zou
,
L.
Zhao
, and
G. C.
Schatz
,
Proc. SPIE
5221
,
174
(
2003
).
19.
S. Zou, L. Zhao, and G. C. Schatz (unpublished).
20.
Y. W. C.
Cao
,
R. C.
Jin
, and
C. A.
Mirkin
,
Science
297
,
1536
(
2002
).
21.
A.
Haes
and
R. P.
Van Duyne
,
J. Am. Chem. Soc.
124
,
10596
(
2002
).
22.
C. L.
Haynes
,
A. D.
McFarland
,
L.
Zhao
,
G. C.
Schatz
,
R. P.
Van Duyne
,
L.
Gunnarsson
,
J.
Prikulis
,
B.
Kasemo
, and
M.
Käll
,
J. Phys. Chem. B
107
,
7337
(
2003
).
23.
V. A.
Markel
,
J. Mod. Opt.
40
,
2281
(
1993
).
24.
U.
Laor
and
G. C.
Schatz
,
Chem. Phys. Lett.
82
,
566
(
1981
).
25.
E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
26.
A. A.
Lazarides
and
G. C.
Schatz
,
J. Phys. Chem.
104
,
460
(
2000
).
27.
S. Zou and G. C. Schatz (unpublished).
This content is only available via PDF.
You do not currently have access to this content.