The concept of fragility provides a possibility to rank different supercooled liquids on the basis of the temperature dependence of dynamic and/or thermodynamic quantities. We recall here the definitions of kinetic and thermodynamic fragility proposed in the last years and discuss their interrelations. At the same time we analyze some recently introduced models for the statistical properties of the potential energy landscape. Building on the Adam–Gibbs relation, which connects structural relaxation times to configurational entropy, we analyze the relation between statistical properties of the landscape and fragility. We call attention to the fact that the knowledge of number, energy depth, and shape of the basins of the potential energy landscape may not be sufficient for predicting fragility. Finally, we discuss two different possibilities for generating strong behavior.

1.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
2.
F. H.
Stillinger
and
T. A.
Weber
,
Science
225
,
983
(
1984
);
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
3.
The total number of inherent structure of the PEL is the product of ΩN times the trivial factor N! due to particle permutation.
4.
C. A.
Angell
,
J. Non-Cryst. Solids
73
,
1
(
1985
);
C. A.
Angell
,
J. Non-Cryst. Solids
131
,
13
(
1995
);
R.
Böhmer
,
K.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1999
).
5.
C. A.
Angell
,
J. Non-Cryst. Solids
131–133
,
13
(
1991
).
6.
A. P.
Sokolov
,
E.
Rössler
,
A.
Kisliuk
, and
D.
Quitmann
,
Phys. Rev. Lett.
71
,
2062
(
1993
).
7.
S.
Yannopoulos
and
G.
Papatheodorou
,
Phys. Rev. B
62
,
3728
(
2000
).
8.
R.
Hall
and
P.
Wolynes
,
J. Chem. Phys.
86
,
2943
(
1987
).
9.
J. C.
Dyre
,
N. B.
Olsen
, and
T.
Christensen
,
Phys. Rev. B
53
,
2171
(
1996
).
10.
J. C.
Dyre
,
J. Non-Cryst. Solids
235–257
,
142
(
1998
).
11.
J. C. Dyre and N. B. Olsen, cond-mat/0211042.
12.
K.
Ngai
,
J. Non-Cryst. Solids
275
,
7
(
2000
).
13.
R.
Bohmer
and
C. A.
Angell
,
Phys. Rev. B
45
,
10091
(
1992
).
14.
I. M.
Hodge
,
Mater. Res. Soc. Symp. Proc.
215
,
10
(
1991
).
15.
T.
Scopigno
,
G.
Ruocco
,
F.
Sette
, and
G.
Monaco
,
Science
302
,
849
(
2003
).
16.
X.
Xia
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
2990
(
2000
).
17.
U. Buchenau and A. Wischnewski, cond-mat/0401088.
18.
M. L.
Ferrer
,
H.
Sakai
,
D.
Kivelson
, and
C.
Alba-Simionesco
,
J. Phys. Chem. B
103
,
4191
(
1999
).
19.
C. A.
Angell
,
K.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
,
J. Appl. Phys.
88
,
3113
(
2000
).
20.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature (London)
410
,
259
(
2001
).
21.
F. H.
Stillinger
,
Science
267
,
1935
(
1995
).
22.
B.
Doliwa
and
A.
Heuer
,
Phys. Rev. E
67
,
031506
(
2003
);
B.
Doliwa
and
A.
Heuer
,
Phys. Rev. E
67
,
030501
(
2003
).
23.
C. A.
Angell
,
Science
267
,
1924
(
1995
).
24.
C. A.
Angell
,
J. Res. Natl. Inst. Stand. Technol.
102
,
171
(
1997
).
25.
R. J.
Speedy
,
J. Phys. Chem. B
103
,
4060
(
1999
).
26.
S.
Sastry
,
Nature (London)
409
,
164
(
2001
).
27.
R.
Richert
and
C. A.
Angell
,
J. Chem. Phys.
108
,
9016
(
1998
).
28.
J. L.
Green
,
K.
Ito
,
K.
Xu
, and
C. A.
Angell
,
J. Phys. Chem. B
103
,
3991
(
1999
).
29.
L.
Wang
,
V.
Velikov
, and
C. A.
Angell
,
J. Chem. Phys.
117
,
10184
(
2002
).
30.
J. P.
Garrahan
and
D.
Chandler
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
9710
(
2003
).
31.
H.
Vogel
,
Phys. Z.
22
,
645
(
1921
);
G. S.
Fulcher
,
J. Am. Ceram. Soc.
8
,
339
(
1923
);
G.
Tamman
and
W.
Hesse
,
Z. Anorg. Allg. Chem.
156
,
245
(
1926
).
32.
L.-M.
Martinez
and
C. A.
Angell
,
Nature (London)
410
,
663
(
2001
).
33.
A remarkable exception is represented by vitreous silica, which is one of the strongest systems according to the kinetic fragility while it turns out very close to glycerol (an intermediate value of mA) as far as the T dependence of the excess entropy is concerned.
34.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
35.
H.
Tanaka
,
Phys. Rev. Lett.
90
,
055701
(
2003
).
36.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
28
,
2408
(
1983
);
C. A.
Angell
and
S.
Borick
,
J. Non-Cryst. Solids
307–310
,
393
(
2002
);
S. Corezzi, L. Comez, and D. Fioretto, cond-mat/0211379;
D.
Prevosto
,
M.
Lucchesi
,
S.
Capaccioli
,
R.
Casalini
, and
P. A.
Rolla
,
Phys. Rev. B
67
,
174202
(
2003
).
37.
R. J.
Speedy
,
J. Phys. Chem. B
105
,
11737
(
2001
).
38.
R. J.
Speedy
and
P. G.
Debenedetti
,
Mol. Phys.
88
,
1293
(
1996
).
39.
R. J.
Speedy
,
Mol. Phys.
95
,
169
(
1998
).
40.
F. H.
Stillinger
,
J. Phys. Chem. B
102
,
2807
(
1998
).
41.
S.
Büchner
and
A.
Heuer
,
Phys. Rev. E
60
,
6507
(
1999
);
A.
Heuer
and
S.
Büchner
,
J. Phys.: Condens. Matter
12
,
6535
(
2000
).
42.
S.
Mossa
,
E.
La Nave
,
H. E.
Stanley
,
C.
Donati
,
F.
Sciortino
, and
P.
Tartaglia
,
Phys. Rev. E
65
,
041205
(
2002
);
S.
Mossa
,
E.
La Nave
, and
F.
Sciortino
,
Eur. Phys. JB
30
,
351
(
2002
);
S.
Mossa
,
E.
La Nave
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Phys.: Condens. Matter
15
,
S351
(
2003
);
E.
La Nave
,
S.
Mossa
,
C.
De Michele
,
F.
Sciortino
, and
P.
Tartaglia
,
J. Phys.: Condens. Matter
15
,
S1085
(
2003
).
43.
F. W.
Starr
,
S.
Sastry
,
E.
La Nave
,
A.
Scala
,
H. E.
Stanley
, and
F.
Sciortino
,
Phys. Rev. E
63
,
041201
(
2001
).
44.
Actually, the microcanonical definition of temperature is T−1=dS/dE, where S it the (total) entropy. At low enough temperature, the latter quantity can be separated in a “configurational” entropy Σ term—that counts the (logarithm of the) number of minima of the PEL—and a “vibrational” term (Sv), that measure the entropy associated to the vibrational motion within the basin of attraction of a given minima. In the harmonic approximation, and with the further assumption that the curvature of the PEL at its minima do not depend on the energy elevation of the minimum itself, Sv=const and, therefore, dS/dE=dΣ/dE.
45.
F.
Sciortino
,
W.
Kob
, and
P.
Tartaglia
,
Phys. Rev. Lett.
83
,
3214
(
1999
);
F.
Sciortino
,
W.
Kob
, and
P.
Tartaglia
,
J. Phys.: Condens. Matter
12
,
6525
(
2000
).
46.
C. A.
Angell
and
W.
Sichina
,
Ann. N.Y. Acad. Sci.
279
,
53
(
1976
).
47.
P. G. Debenedetti, F. H. Stillinger, and C. P. Lewis, preprint.
48.
P. G. Debenedetti, Metastable Liquids. Concepts and Principles (Princeton University Press, Princeton, 1996).
49.
P. G.
Debenedetti
,
F. H.
Stillinger
, and
M. Scott
Shell
,
J. Phys. Chem. B
107
,
14434
(
2003
).
50.
C. A.
Angell
,
B. E.
Richards
, and
V.
Velikov
,
J. Phys.: Condens. Matter
11
,
A75
(
1999
);
C. T.
Moynihan
, and
C. A.
Angell
,
J. Non-Cryst. Solids
274
,
131
(
2000
).
51.
E.
La Nave
,
S.
Mossa
, and
F.
Sciortino
,
Phys. Rev. Lett.
88
,
225701
(
2002
).
52.
F.
Sciortino
,
E.
La Nave
, and
P.
Tartaglia
,
Phys. Rev. Lett.
91
,
155701
(
2003
).
53.
R. J.
Speedy
,
Biophys. Chem.
105
,
411
(
2003
).
54.
Note that Eq. (8) in Ref. 26 defines a fragility index with the dimension of energy. In the caption of Fig. 1, Sastry clarifies that—in order to have a dimensionless fragility index—a dimensional quantity is needed in going from from TSc, which is a dimensional quantity and fragility that is dimensionless. In the absence of a good way to calculate ℰ, Sastry choose the Lennard-Jones energy scale εAA, finding support for such a choice in the numerical data. This choice leads to the approximation K=(ε̄α/2εAA)(1+TK/T), to be compared with the exact expression K=(ε̄α/2E)(1+TK/T), reported in Eq. (51).
55.
D.
Huang
and
G. B.
McKenna
,
J. Chem. Phys.
114
,
5621
(
2001
).
56.
The existing correlation between thermodynamic (mT) and kinetic (mS) fragilities—as experimentally observed in Ref. 32—is NOT in contradiction with the statement that Σ(T) alone is not sufficient to determine fragility. Indeed, the experimentally observed correlation between mT and mS [discussed in Eq. (11) of the manuscript] can be derived—beyond assuming the proportionality between configurational and excess entropy—from (i) the definition of mT [Eq. (7)]; (ii) the definition of mS [Eq. (2)]; and (iii) the AG relation. We stress that Eq. (11) is independent from whether or not the fragility could be derived from Σ(T) only. Note that, as shown in Eq. (7), the evaluation of mT requires the knowledge of two thermodynamic quantities (the excess entropy and the T derivative of it), but also the knowledge of one dynamical quantity (Tg). The presence of Tg in the definition of mT highlights the need for dynamical information in the evaluation of the fragility.
57.
D.
Perera
and
P.
Harrowell
,
Phys. Rev. E
54
,
1652
(
1996
).
58.
J.
Horbach
and
W.
Kob
,
Phys. Rev. B
60
,
3169
(
1999
).
59.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
,
Phys. Rev. Lett.
64
,
1955
(
1990
).
60.
C. A.
Angell
,
J. Phys. Chem.
97
,
6339
(
1993
);
K.
Ito
,
C. T.
Moynihan
, and
C. A.
Angell
,
Nature (London)
398
,
492
(
1999
).
61.
F.
Starr
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. E
60
,
6757
(
1999
).
62.
M.
Hemmatti
,
C.
Moynihan
, and
C. A.
Angell
,
J. Chem. Phys.
115
,
6663
(
2001
).
63.
I.
Saika-Voivod
,
P. H.
Poole
, and
F.
Sciortino
,
Nature (London)
412
,
514
(
2001
).
64.
R. J.
Speedy
,
J. Phys.: Condens. Matter
15
,
S1243
(
2003
).
65.
G. Tarjus, D. Kivelson, S. Mossa, and C. Alba-Simionesco cond-mat/0309579, 2003.
This content is only available via PDF.
You do not currently have access to this content.