The Nakajima–Zwanzig generalized quantum master equation (GQME) provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a, possibly anharmonic, quantum bath. In this equation, a memory kernel superoperator accounts for the influence of the bath on the dynamics of the system. In a previous paper [Q. Shi and E. Geva, J. Chem. Phys. 119, 12045 (2003)] we proposed a new approach to calculating the memory kernel, in the case of arbitrary system-bath coupling. Within this approach, the memory kernel is obtained by solving a set of two integral equations, which requires a new type of two-time system-dependent bath correlation functions as input. In the present paper, we consider the application of the linearized semiclassical (LSC) approximation for calculating those correlation functions, and subsequently the memory kernel. The new approach is tested on a benchmark spin-boson model. Application of the LSC approximation for calculating the relatively short-lived memory kernel, followed by a numerically exact solution of the GQME, is found to provide an accurate description of the relaxation dynamics. The success of the proposed LSC–GQME methodology is contrasted with the failure of both the direct application of the LSC approximation and the weak coupling treatment to provide an accurate description of the dynamics, for the same model, except at very short times. The feasibility of the new methodology to anharmonic systems is also demonstrated in the case of a two level system coupled to a chain of Lennard–Jones atoms.

1.
B. J. Berne, G. Ciccotti, and D. F. Coker, Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, London, 1998).
2.
N.
Makri
,
Annu. Rev. Phys. Chem.
50
,
167
(
1999
).
3.
P.
Jungwirth
and
R. B.
Gerber
,
Chem. Rev.
99
,
1583
(
1999
).
4.
R.
Kosloff
,
J. Phys. Chem.
92
,
2087
(
1988
).
5.
C.
Leforestier
,
R. H.
Bisseling
,
C.
Cerjan
et al.,
J. Comput. Phys.
94
,
59
(
1991
).
6.
R. Kosloff, in Numerical Grid Methods and Their Application to Schrödinger’s Equation, edited by C. Cerjan (Kluwer Academic, The Netherlands, 1993), p. 175.
7.
R.
Kosloff
,
Annu. Rev. Phys. Chem.
45
,
145
(
1994
).
8.
R. Kosloff, in Dynamics of Molecules and Chemical Reactions, edited by D. T. Haar (Dekker, New York, 1996), p. 185.
9.
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
).
10.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
11.
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer, New York, 1985).
12.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).
13.
T.
Yamamoto
,
J. Chem. Phys.
33
,
281
(
1960
).
14.
E.
Geva
,
Q.
Shi
, and
G. A.
Voth
,
J. Chem. Phys.
115
,
9209
(
2001
).
15.
K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996).
16.
F.
Haake
,
Springer Tracts Mod. Phys.
66
,
98
(
1973
).
17.
R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987).
18.
R. K.
Wangsness
and
F.
Bloch
,
Phys. Rev.
89
,
728
(
1953
).
19.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
(
1957
).
20.
B.
Yoon
,
J. M.
Deutch
, and
J. H.
Freed
,
J. Chem. Phys.
62
,
4687
(
1975
).
21.
I. Oppenheim, K. E. Shuler, and G. H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (MIT Press, Cambridge, MA, 1977).
22.
S.
Mukamel
,
I.
Oppenheim
, and
J.
Ross
,
Phys. Rev. A
17
,
1988
(
1978
).
23.
V.
Romero-Rochin
and
I.
Oppenheim
,
Physica A
155
,
52
(
1989
).
24.
V.
Romero-Rochin
,
A.
Orsky
, and
I.
Oppenheim
,
Physica A
156
,
244
(
1989
).
25.
N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
26.
B. B.
Laird
,
J.
Budimir
, and
J. L.
Skinner
,
J. Chem. Phys.
94
,
4391
(
1991
).
27.
W. T.
Pollard
and
R. A.
Friesner
,
J. Chem. Phys.
100
,
5054
(
1994
).
28.
W. T.
Pollard
,
A. K.
Felts
, and
R. A.
Friesner
,
Adv. Chem. Phys.
XCIII
,
77
(
1996
).
29.
E.
Geva
,
R.
Kosloff
, and
J. L.
Skinner
,
J. Chem. Phys.
102
,
8541
(
1995
).
30.
E.
Geva
and
R.
Kosloff
,
J. Chem. Phys.
104
,
7681
(
1996
).
31.
D.
Kohen
,
C. C.
Marston
, and
D. J.
Tannor
,
J. Chem. Phys.
107
,
5236
(
1997
).
32.
J.
Cao
,
J. Chem. Phys.
107
,
3204
(
1997
).
33.
Y. J.
Yan
,
Phys. Rev. A
58
,
2721
(
1998
).
34.
M.
Berman
,
R.
Kosloff
, and
H.
Tal-Ezer
,
J. Phys. A
25
,
1283
(
1992
).
35.
G.
Ashkenazi
,
U.
Banin
,
A.
Bartana
,
R.
Kosloff
, and
S.
Ruhman
,
Adv. Chem. Phys.
100
,
229
(
1997
).
36.
G.
Ashkenazi
,
R.
Kosloff
, and
M. A.
Ratner
,
J. Am. Chem. Soc.
121
,
3386
(
1999
).
37.
R.
Kosloff
,
M. A.
Ratner
, and
W. B.
Davis
,
J. Chem. Phys.
106
,
7036
(
1997
).
38.
A.
Suárez
and
R.
Silbey
,
J. Chem. Phys.
94
,
4809
(
1991
).
39.
D.
Li
and
G. A.
Voth
,
J. Phys. Chem.
95
,
10425
(
1991
).
40.
B. B.
Laird
and
J. L.
Skinner
,
J. Chem. Phys.
94
,
4405
(
1991
).
41.
D. R.
Reichman
and
R. J.
Silbey
,
J. Chem. Phys.
104
,
1506
(
1996
).
42.
D. R.
Reichman
and
F. L. H. B. P.
Neu
,
Phys. Rev. E
55
,
2328
(
1997
).
43.
S.
Jang
,
J.
Cao
, and
R. J.
Silbey
,
J. Chem. Phys.
116
,
2705
(
2002
).
44.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
45.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
46.
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, New Jersey, 1995).
47.
R. P.
Feynman
and
F. L.
Vernon
, Jr.
,
Ann. Phys.
24
,
118
(
1963
).
48.
P. G.
Wolynes
,
Phys. Rev. Lett.
47
,
968
(
1981
).
49.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
(
1983
).
50.
R. D.
Coalson
,
J. Chem. Phys.
86
,
995
(
1987
).
51.
C.
Mak
and
D.
Chandler
,
Phys. Rev. A
44
,
2352
(
1991
).
52.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
).
53.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
97
,
9001
(
1992
).
54.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
285
(
1993
).
55.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
448
(
1993
).
56.
M.
Topaler
and
N.
Makri
,
J. Phys. Chem.
100
,
4430
(
1996
).
57.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
58.
N.
Makri
and
D.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
59.
N.
Makri
and
D.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
60.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
61.
N.
Makri
,
E.
Sim
,
D. E.
Makarov
, and
M.
Topaler
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
3926
(
1996
).
62.
E.
Sim
and
N.
Makri
,
Comput. Phys. Commun.
99
,
335
(
1997
).
63.
E.
Sim
and
N.
Makri
,
J. Phys. Chem. B
101
,
5446
(
1997
).
64.
N.
Makri
,
J. Phys. Chem. A
102
,
4414
(
1998
).
65.
J. S.
Shao
and
N.
Makri
,
J. Chem. Phys.
116
,
507
(
2002
).
66.
A. A.
Golosov
,
R. A.
Friesner
, and
P.
Pechukas
,
J. Chem. Phys.
110
,
138
(
1999
).
67.
A. A.
Golosov
,
R. A.
Friesner
, and
P.
Pechukas
,
J. Chem. Phys.
112
,
2095
(
2000
).
68.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
69.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
110
,
1343
(
1999
).
70.
K.
Thompson
and
N.
Makri
,
Phys. Rev. E
59
,
R4729
(
1999
).
71.
S.
Nakajima
,
Prog. Theor. Phys.
20
,
948
(
1958
).
72.
R.
Zwanzig
,
Lect. Theor. Phys.
3
,
106
(
1960
).
73.
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
).
74.
R.
Zwanzig
,
Physica
30
,
1109
(
1984
).
75.
I.
Prigogine
and
P.
Resibois
,
Physica
27
,
629
(
1961
).
76.
H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer, Berlin, 1982).
77.
V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Willey, Berlin, 2000).
78.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
119
,
12045
(
2003
).
79.
G. D.
Billing
,
Chem. Phys. Lett.
30
,
391
(
1975
).
80.
G. D.
Billing
,
J. Chem. Phys.
99
,
5849
(
1993
).
81.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
82.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
83.
P. J.
Kuntz
,
J. Chem. Phys.
95
,
141
(
1991
).
84.
A. I.
Krylov
,
R. B.
Gerber
,
M. A.
Gaveau
,
J. M.
Mestdagh
, and
B.
Schilling
,
J. Chem. Phys.
104
,
3651
(
1996
).
85.
K.
Yamashita
and
W. H.
Miller
,
J. Chem. Phys.
82
,
5475
(
1985
).
86.
E.
Rabani
,
G.
Krilov
, and
B. J.
Berne
,
J. Chem. Phys.
112
,
2605
(
2000
).
87.
E.
Sim
,
G.
Krilov
, and
B.
Berne
,
J. Phys. Chem. A
105
,
2824
(
2001
).
88.
J.
Poulsen
and
P. J.
Rossky
,
J. Chem. Phys.
115
,
8014
(
2001
).
89.
E.
Gallicchio
and
B. J.
Berne
,
J. Chem. Phys.
105
,
7064
(
1996
).
90.
E.
Gallicchio
,
S. A.
Egorov
, and
B. J.
Berne
,
J. Chem. Phys.
109
,
7745
(
1998
).
91.
S. A.
Egorov
,
E.
Gallicchio
, and
B. J.
Berne
,
J. Chem. Phys.
107
,
9312
(
1997
).
92.
G.
Krilov
and
B. J.
Berne
,
J. Chem. Phys.
111
,
9147
(
1999
).
93.
E.
Rabani
,
D. R.
Reichman
,
G.
Krylov
, and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
1129
(
2002
).
94.
A. A.
Golosov
,
D. R.
Reichman
, and
E.
Rabani
,
J. Chem. Phys.
118
,
457
(
2003
).
95.
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
1996
).
96.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
116
,
3223
(
2002
).
97.
J.
Poulsen
,
S. R.
Keiding
, and
P. J.
Rossky
,
Chem. Phys. Lett.
336
,
488
(
2001
).
98.
S.
Jang
,
Y.
Pak
, and
G. A.
Voth
,
J. Phys. Chem. A
103
,
10289
(
1999
).
99.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
100.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6157
(
1994
).
101.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
).
102.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2357
(
1999
).
103.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
104.
D. R.
Reichman
,
P.-N.
Roy
,
S.
Jang
, and
G. A.
Voth
,
J. Chem. Phys.
113
,
919
(
2000
).
105.
A.
Calhoun
,
M.
Pavese
, and
G. A.
Voth
,
Chem. Phys. Lett.
262
,
415
(
1996
).
106.
U. W.
Schmitt
and
G. A.
Voth
,
J. Chem. Phys.
111
,
9361
(
1999
).
107.
M.
Pavese
and
G. A.
Voth
,
Chem. Phys. Lett.
249
,
231
(
1996
).
108.
K.
Kinugawa
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Phys.
106
,
1154
(
1997
).
109.
K.
Kinugawa
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Phys.
109
,
610
(
1998
).
110.
K.
Kinugawa
,
Chem. Phys. Lett.
292
,
454
(
1998
).
111.
M.
Pavese
,
D. R.
Bernard
, and
G. A.
Voth
,
Chem. Phys. Lett.
300
,
93
(
1999
).
112.
D. R.
Reichman
and
E.
Rabani
,
Phys. Rev. Lett.
87
,
265702
(
2001
).
113.
E.
Rabani
and
D. R.
Reichman
,
J. Chem. Phys.
116
,
6271
(
2002
).
114.
E.
Rabani
and
D. R.
Reichman
,
Phys. Rev. E
65
,
036111
(
2002
).
115.
D. R.
Reichman
and
E.
Rabani
,
J. Chem. Phys.
116
,
6279
(
2002
).
116.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
117.
E.
Pollak
and
J.
Liao
,
J. Chem. Phys.
108
,
2733
(
1998
).
118.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
119.
W. H.
Miller
,
J. Chem. Phys.
53
,
3578
(
1970
).
120.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
121.
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
(
1981
).
122.
K. G.
Kay
,
J. Chem. Phys.
100
,
4377
(
1994
).
123.
M.
Ovchinnikov
and
V. A.
Apkarian
,
J. Chem. Phys.
105
,
10312
(
1996
).
124.
M.
Ovchinnikov
and
V. A.
Apkarian
,
J. Chem. Phys.
108
,
2277
(
1998
).
125.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
916
(
1997
).
126.
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
).
127.
J. S.
Shao
and
N.
Makri
,
J. Phys. Chem. A
103
,
7753
(
1999
).
128.
K.
Thompson
and
N.
Makri
,
Phys. Rev. E
59
,
R4729
(
1999
).
129.
O.
Kühn
and
N.
Makri
,
J. Phys. Chem. A
103
,
9487
(
1999
).
130.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
47
(
2000
).
131.
M.
Ovchinnikov
,
V. A.
Apkarian
, and
G. A.
Voth
,
J. Chem. Phys.
184
,
7130
(
2001
).
132.
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
133.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
116
,
9207
(
2002
).
134.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
).
135.
K.
Imre
,
E.
Ozizmir
,
M.
Rosenbaum
, and
P. F.
Zweifel
,
J. Math. Phys.
8
,
1097
(
1967
).
136.
I.
Oppenheim
and
J.
Ross
,
Phys. Rev.
107
,
28
(
1957
).
137.
H. Mori, I. Oppenheim, and J. Ross, in Studies in Statistical Mechanics, edited by J. De Boer and G. E. Uhlenbeck (North-Holland, Amsterdam, 1962), Vol. 1.
138.
J. T.
Hynes
,
J. M.
Deutch
,
C. H.
Wang
, and
I.
Oppenheim
,
J. Chem. Phys.
48
,
3085
(
1968
).
139.
E. J.
Heller
,
J. Chem. Phys.
65
,
1289
(
1976
).
140.
H. W.
Lee
and
M. O.
Scully
,
J. Chem. Phys.
73
,
2238
(
1980
).
141.
R. E.
Cline
, Jr.
and
P. G.
Wolynes
,
J. Chem. Phys.
88
,
4334
(
1988
).
142.
V. Khidekecl, V. Chernyak, and S. Mukamel, in Femtochemistry: Ultrafast Chemical and Physical Processes in Molecular Systems, edited by M. Chergui (World Scientific, Singapore, 1996), p. 507.
143.
V. S.
Filinov
,
Mol. Phys.
88
,
1517
(
1996
).
144.
V. S.
Filinov
,
Mol. Phys.
88
,
1529
(
1996
).
145.
V. S. Filinov, S. Bonella, Y. E. Lazovik, A. V. Filinov, and I. Zacharov in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1997).
146.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
104
,
273
(
1996
).
147.
R.
Hernandez
and
G. A.
Voth
,
Chem. Phys.
233
,
243
(
1998
).
148.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
4190
(
1998
).
149.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
150.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
4828
(
1999
).
151.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
110
,
6635
(
1999
).
152.
J. L.
Liao
and
E.
Pollak
,
J. Chem. Phys.
111
,
7244
(
1999
).
153.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
118
,
8173
(
2003
).
154.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
107
,
9059
(
2003
).
155.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
107
,
9070
(
2003
).
156.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Chem. Phys.
119
,
12179
(
2003
).
157.
M. P.
Miller
and
C. W.
McCurdy
,
J. Chem. Phys.
69
,
5163
(
1978
).
158.
C. W.
McCurdy
,
H. D.
Meyer
, and
W. H.
Miller
,
J. Phys. Chem.
70
,
3214
(
1978
).
159.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
160.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
71
,
2156
(
1979
).
161.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
162.
M.
Thoss
and
G.
Stock
,
Phys. Rev. A
59
,
64
(
1999
).
163.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
164.
U. Weiss, Quantum Dissipative Systems (World Scientific, London, 1993).
165.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986).
166.
E.
Geva
,
E.
Rosenman
, and
D. J.
Tannor
,
J. Chem. Phys.
113
,
1380
(
2000
).
167.
J.
Poulsen
and
P. J.
Rossky
,
J. Chem. Phys.
115
,
8024
(
2001
).
168.
K.
Thompson
and
N.
Makri
,
Chem. Phys. Lett.
291
,
101
(
1998
).
169.
N.
Makri
,
J. Chem. Phys.
111
,
6164
(
1999
).
170.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
9220
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.